Search results for: Rheological properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2904

Search results for: Rheological properties

2844 Effect of 2wt% Cu Addition on the Tensile Properties and Fracture Behavior of Peak Aged Al-6Si-0.5Mg-2Ni Alloy at Various Strain Rates

Authors: A. Hossain, A. S. W. Kurny, M. A. Gafur

Abstract:

Effect of 2wt% Cu addition on tensile properties and fracture behavior of Al-6Si-0.5Mg-2Ni alloy at various strain rates were studied. The solution treated Al-6Si-0.5Mg-2Ni (-2Cu) alloys, were aged isochronally for 1 hour at temperatures up to 300oC. The uniaxial tension test was carried out at strain rate ranging from 10-4s-1 to 10-2s-1 in order to investigate the strain rate dependence of tensile properties. Tensile strengths were found to increase with ageing temperature and the maximum being attained ageing for 1 hr at 225oC (peak aged condition). Addition of 2wt% Cu resulted in an increase in tensile properties at all strain rates. Evaluation of tensile properties at three different strain rates (10-4, 10-3 and 10-2 s-1) showed that strain rates affected the tensile properties significantly. At higher strain rates the strength was better but ductility was poor. Microstructures of broken specimens showed that both the void coalescence and the interface debonding affect the fracture behavior of the alloys

Keywords: Al-Si-Mg-Ni-Cu alloy, tensile properties, strain rate, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
2843 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

Keywords: Hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
2842 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions

Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.

Keywords: Antimicrobial, home device, SEBS, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2841 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control

Authors: Arnab Majumdar, Sanjoy Sadhukhan

Abstract:

Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.

Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
2840 Possibilities of Utilization Zeolite in Concrete

Authors: M. Sedlmajer, J. Zach, J. Hroudová, P. Rovnaníková

Abstract:

There are several possibilities of reducing the required amount of cement in concrete production. Natural zeolite is one of the raw materials which can partly substitute Portland cement. The effort to reduce the amount of Portland cement used in concrete production is brings both economical as well as ecological benefits. The paper presents the properties of concrete containing natural zeolite as an active admixture in the concrete which partly substitutes Portland cement. The properties discussed here bring information about the basic mechanical properties and frost resistance of concrete containing zeolite. The properties of concretes with the admixture of zeolite are compared with a reference concrete with no content of zeolite. The properties of the individual concretes are observed for 360 days.

Keywords: Concrete, zeolite, compressive strength, modulus of elasticity, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
2839 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: Preform, non-crimp, laminates, bi-axial, multiaxial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
2838 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate: Effect of Processing Parameters

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials of two different methodologies are discussed. Methodology 1 revealed that the addition of layered silicate into the polymer matrix increased the mechanical and thermal properties up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the properties which was traced to the existence of aggregation layers. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. On the other hand, methodology 2 increased the mechanical and thermal properties up to 4 wt.% clay loading. The different amounts of improvements were assigned to the various preparation parameters. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilized in order to characterize the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
2837 Flow Properties of Commercial Infant Formula Powders

Authors: Maja Benkovic, Ingrid Bauman

Abstract:

The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.

Keywords: flow properties, infant formula, powderedmaterial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119
2836 Preparation and Characterization of Chitosan / Polyacrylic Acid / Ag-Nanoparticles Composite Membranes

Authors: Abdel-Mohdy, A. Abou-Okeil, S. El-Sabagh, S. M. El-Sawy

Abstract:

Chitosan polyacrylic acid composite membranes were prepared by a bulk polymerization method in presence of N, N'- methylene bisacrylamide (crosslinker) and ammonium persulphate as initiator. Membranes prepared from this copolymer in presence and absence of Ag nanoparticles were characterized by measuring mechanical and physical properties, water up-take and antibacterial properties. The results obtained indicated that the prepared membranes have antibacterial properties which increase with adding Ag nanoparticles.

Keywords: Ag nanoparticles, antimicrobial, composites, Membrane, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
2835 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminum alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40-minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, Mechanical properties, SCC resistance, Heat Treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
2834 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation

Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi

Abstract:

Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.

Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
2833 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics

Authors: M. Kucukali Ozturk, Y. Beceren, B. Nergis

Abstract:

The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.

Keywords: Color change, dimensional properties, drying method, fabric tightness, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
2832 Mechanical Properties of Die-Cast Nonflammable Mg Alloy

Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.

Keywords: Non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
2831 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples would be tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: Dielectric properties, high voltage transformer, mineral oil, water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
2830 Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect

Authors: H. Assaedi, F. U. A. Shaikh, I. M. Low

Abstract:

This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by weight. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples, prepared using dry-mixing approach, demonstrate better physical and mechanical properties comparing to wet-mixing samples.

Keywords: Geopolymer, mechanical properties, nanosilica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
2829 Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3)

Authors: D. Aboutaleb, B. Safi

Abstract:

The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide.

Keywords: Borate glasses, triangles and tetrahedrons boron, Lithium oxide, Boron anomaly, thermal properties, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
2828 Extremal Properties of Generalized Class of Close-to-convex Functions

Authors: Norlyda Mohamed, Daud Mohamad, Shaharuddin Cik Soh

Abstract:

Let Gα ,β (γ ,δ ) denote the class of function f (z), f (0) = f ′(0)−1= 0 which satisfied e δ {αf ′(z)+ βzf ′′(z)}> γ i Re in the open unit disk D = {z ∈ı : z < 1} for some α ∈ı (α ≠ 0) , β ∈ı and γ ∈ı (0 ≤γ <α ) where δ ≤ π and α cosδ −γ > 0 . In this paper, we determine some extremal properties including distortion theorem and argument of f ′( z ) .

Keywords: Argument of f ′(z) , Carathéodory Function, Closeto- convex Function, Distortion Theorem, Extremal Properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2827 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method

Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz

Abstract:

In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.

Keywords: Rheology, biomass, pyrolysis, biochar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
2826 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment

Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam

Abstract:

This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.

Keywords: Halloysite nanotubes, polymer degradation, flexural properties, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
2825 Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review

Authors: S. I. Durowaye, O. P. Gbenebor, B. O. Bolasodun, I. O. Rufai, V. O. Durowaye

Abstract:

Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.

Keywords: Ceramic composites, Mechanical properties, Microparticles, Thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
2824 Thermoelectric Properties of Doped Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.

Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
2823 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Authors: A. Yönetken, A. Erol, M. Cakmakkaya

Abstract:

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.

Keywords: Composite, Intermetallic, High temperature, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
2822 Some Properties of IF Rough Relational Algebraic Operators in Medical Databases

Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar

Abstract:

Some properties of Intuitionistic Fuzzy (IF) rough relational algebraic operators under an IF rough relational data model are investigated and illustrated using diabetes and heart disease databases. These properties are important and desirable for processing queries in an effective and efficient manner.

 

Keywords: IF Set, Rough Set, IF Rough Relational Database, IF rough Relational Operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
2821 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: Ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
2820 Principal Component Analysis for the Characterization in the Application of Some Soil Properties

Authors: Kamolchanok Panishkan, Kanokporn Swangjang, Natdhera Sanmanee, Daoroong Sungthong

Abstract:

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

Keywords: soil organic matter, soil properties, classification, principal components

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4124
2819 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: Environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
2818 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited a harder and rougher structure than the substrate.

Keywords: Amorphous, electroless Ni–B, magnesium, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
2817 A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays

Authors: Rassoli Aisa, Abrishami Movahhed Arezu, Faturaee Nasser, Seddighi Amir Saeed, Shafigh Mohammad

Abstract:

Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented.

Keywords: Fung’s quasilinear viscoelastic (QLV) model, strain rate, stress relaxation test, uniaxial tensile test, viscoelastic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
2816 Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation

Authors: N. K. Sharma, J. Nayak, D. K. Sehgal, R. K. Pandey

Abstract:

Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.

Keywords: Cortical bone, sub-size specimen, full size specimen, finite element modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2815 Properties of Rhizophora Charcoal for Product Design

Authors: Tanutpong Phriwanrat

Abstract:

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.

Keywords: Design, Product design, Properties of Rhizophora, Rhizophora Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875