Search results for: Nonlinear system identification
9587 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes
Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail
Abstract:
The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.Keywords: PID, LQR, Two-wheels balancing robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52839586 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model
Authors: T. H. Lee, J. H. Park, S. M. Lee, S. C. Lee
Abstract:
In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.
Keywords: SOFC, model predictive control, Wiener model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20689585 Some Third Order Methods for Solving Systems of Nonlinear Equations
Authors: Janak Raj Sharma, Rajni Sharma
Abstract:
Based on Traub-s methods for solving nonlinear equation f(x) = 0, we develop two families of third-order methods for solving system of nonlinear equations F(x) = 0. The families include well-known existing methods as special cases. The stability is corroborated by numerical results. Comparison with well-known methods shows that the present methods are robust. These higher order methods may be very useful in the numerical applications requiring high precision in their computations because these methods yield a clear reduction in number of iterations.Keywords: Nonlinear equations and systems, Newton's method, fixed point iteration, order of convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22089584 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone
Authors: Ibrahim F. Jasim
Abstract:
This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.
Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17139583 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17849582 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10009581 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17349580 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15049579 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.
Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22889578 Nonoscillation Criteria for Nonlinear Delay Dynamic Systems on Time Scales
Authors: Xinli Zhang
Abstract:
In this paper, we consider the nonlinear delay dynamic system xΔ(t) = p(t)f1(y(t)), yΔ(t) = −q(t)f2(x(t − τ )). We obtain some necessary and sufficient conditions for the existence of nonoscillatory solutions with special asymptotic properties of the system. We generalize the known results in the literature. One example is given to illustrate the results.
Keywords: Dynamic system, oscillation, time scales, two-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12949577 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy
Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani
Abstract:
In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100199576 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation
Authors: Sun Lim, Il-Kyun Jung
Abstract:
This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16269575 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14319574 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration
Authors: Farhad Asadi, Gholamhasan Payganeh
Abstract:
High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.
Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6149573 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18439572 Identification of Impact Loads and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact loads and some hard-to-obtain system parameters is crucial for analysis, validation, and evaluation activities in the engineering field. This paper proposes a method based on 1D-CNN to identify impact loads and partial system parameters from the measured responses. To this end, forward computations are conducted to provide datasets consisting of triples (parameter θ, input u, output y). Two neural networks are then trained: one to learn the mapping from output y to input u and another to learn the mapping from input and output (u, y) to parameter θ. Subsequently, by feeding the measured output response into the trained neural networks, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameter.
Keywords: Convolutional neural network, impact load identification, system parameter identification, inverse problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039571 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input
Authors: Toshinori Nawata, Hitoshi Takata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14419570 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification
Authors: Ginalber L. O. Serra
Abstract:
This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14919569 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23659568 Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions
Authors: A. Bahmanikashkouli, O.R. Bahadori Nezhad
Abstract:
In this article, the phenomenon of nonlinear consolidation in saturated and homogeneous clay layer is studied. Considering time-varied drainage model, the excess pore water pressure in the layer depth is calculated. The Generalized Differential Quadrature (GDQ) method is used for the modeling and numerical analysis. For the purpose of analysis, first the domain of independent variables (i.e., time and clay layer depth) is discretized by the Chebyshev-Gauss-Lobatto series and then the nonlinear system of equations obtained from the GDQ method is solved by means of the Newton-Raphson approach. The obtained results indicate that the Generalized Differential Quadrature method, in addition to being simple to apply, enjoys a very high accuracy in the calculation of excess pore water pressure.Keywords: Generalized Differential Quadrature method, Nonlinear consolidation, Nonlinear system of equations, Time-varied drainage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20299567 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.
Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11389566 Digital Image Encryption Scheme using Chaotic Sequences with a Nonlinear Function
Abstract:
In this study, a system of encryption based on chaotic sequences is described. The system is used for encrypting digital image data for the purpose of secure image transmission. An image secure communication scheme based on Logistic map chaotic sequences with a nonlinear function is proposed in this paper. Encryption and decryption keys are obtained by one-dimensional Logistic map that generates secret key for the input of the nonlinear function. Receiver can recover the information using the received signal and identical key sequences through the inverse system technique. The results of computer simulations indicate that the transmitted source image can be correctly and reliably recovered by using proposed scheme even under the noisy channel. The performance of the system will be discussed through evaluating the quality of recovered image with and without channel noise.Keywords: Digital image, Image encryption, Secure communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22389565 On the System of Nonlinear Rational Difference Equations
Authors: Qianhong Zhang, Wenzhuan Zhang
Abstract:
This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.
Keywords: Difference equations, stability, unstable, global asymptotic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24659564 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.
Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20709563 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6209562 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14549561 A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A , Israel Nuñez
Abstract:
A bond graph model of an electrical transformer including the nonlinear saturation is presented. A nonlinear observer for the transformer based on multivariable circle criterion in the physical domain is proposed. In order to show the saturation and hysteresis effects on the electrical transformer, simulation results are obtained. Finally, the paper describes that convergence of the estimates to the true states is achieved.Keywords: Bond graph, nonlinear observer, electrical transformer, nonlinear saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16189560 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19629559 Light Tracking Fault Tolerant Control System
Authors: J. Florescu, T. Vinay, L. Wang
Abstract:
A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14089558 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662