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Abstract—The identification of impact loads and some
hard-to-obtain system parameters is crucial for analysis, validation,
and evaluation activities in the engineering field. This paper proposes
a method based on 1D-CNN to identify impact loads and partial
system parameters from the measured responses. To this end,
forward computations are conducted to provide datasets consisting
of triples (parameter θ, input u, output y). Two neural networks
are then trained: one to learn the mapping from output y to input u
and another to learn the mapping from input and output (u, y) to
parameter θ. Subsequently, by feeding the measured output response
into the trained neural networks, the input impact load and system
parameter can be calculated, respectively. The method is tested on
two simulated examples and shows sound accuracy in estimating the
impact load (waveform and location) and system parameter.

Keywords—Convolutional neural network, impact load
identification, system parameter identification, inverse problem.

I. INTRODUCTION

THE identification of impact loads plays an important

role in structure design, vibration analysis, disaster

recognition, and structural health monitoring across aerospace,

mechanical, civil, and other engineering fields. Generally,

direct measurement by devices is unavailable due to the

unpredictive and destructive nature of impact loads, such

as burst loads. Therefore, the widely used approaches

are to estimate the impact load from structural responses

[1]-[2]. With the development of sensing and communication

technologies, obtaining these responses has become more

affordable and easier. However, identifying the impact load

from the measured output remains a challenging inverse

problem, characterized by difficulties such as ill-condition and

non-linearity.

Many studies have focused on this issue, with the direct

inverse method being the most natural approach [3]. To

mitigate the effects of an ill-conditioned matrix, regularization

techniques that incorporate the priors of impact loads (e.g.,

sparsity in a transformed domain) are frequently employed

[4]-[7]. And linearization is necessary for nonlinear structures

to construct the corresponding system matrices. To avoid the

computation of a large-scale matrix inversion, the impact

load is represented by a weighted superposition of basis

functions. The problem is transformed into seeking a set of

weights that minimize the gap between the measured responses

and the calculated responses under the basis functions. This

classic optimization problem can be solved by the least

squares method or heuristic searching/evolutionary computing

methods, such as genetic algorithm [8]-[11]. However, the
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results greatly depend on the number and form of selected

basis functions.

Recently, artificial neural networks (ANN) have emerged

as a promising approach for identifying impact loads. Due

to the strong representation ability of ANN, the nonlinear

relationship between input impact loads and output responses

can be learned through the training of a large number

of prepared data pairs. In addition, neural networks offer

greater flexibility in manipulating data dimensions compared

to heuristic and evolutionary optimization algorithms. On

the premise that the ANN model enjoys good generalization

performance, it can estimate the impact load very fast during

the inference stage. This feature is particularly appealing for

the online tracking, evaluation, and monitoring of structures.

Zhou et al. [12] used a deep recurrent neural network (RNN)

model based on long short-term memory (LSTM) layers to

identify the impact load of nonlinear structures, showing the

capability for identifying the complex impact load even if

the impact location is unknown. Li et al. [13] employed

Kriging interpolation combined with BP neural network

(K-BP) to improve the accuracy of strain field inversion and

load identification for carbon fiber reinforced plastic (CFRP).

Baek et al. [14] proposed a multi-layered perceptron (MLP)

based method to identify impact points and magnitudes of

a submerged floating tunnel (SFT) and validated it through

numerical simulations and experimental tests. Guo et al. [15]

utilized three kinds of machine learning models, gradient

boosting decision trees (GBDT) model, convolutional neural

network (CNN) model, and bidirectional long short-term

memory (BLSTM) model to identify and locate impact loads

based on dynamic responses. The performance of different

models was compared using a thin-walled cylinder.

However, in the context of existing works relying on ANN,

the limitation arises from the fact that the system is fully

predefined during the dataset construction for training. That

is the form of the governing equation is fixed, as well as the

parameter values within the equation. As a result, the mapping

relationship learned from system output to system input is

only suitable for the specific conditions. While in practical

scenarios, it is difficult to obtain or measure some system

parameters, such as damping, which can also exhibit variations

during operation. Therefore, in this paper, the authors attempt

to calculate the system outputs under impact loads for different

system parameters, forming a dataset consisting of the triple

variables of system parameter θi, input impact load ui, and

output response yi: {(θi, ui, yi)}. Two neural network models

denoted as the impact load identification network Nu and the

system parameter estimation network Nθ, based on 1D-CNN,

are trained separately. The former is used to learn the mapping
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(b) Inferring(a) Training

Dataset: 

Fig. 1 Framework of the proposed method

from output response to input impact load by arranging the

dataset as {(yi;ui)|θi}, and the latter is used to learn the

mapping from input impact load and output response to system

parameter by organizing the dataset as {(ui, yi; θi)}. Thus,

the network can grasp the relationship between the input and

output when the system parameter varies within a certain

range. Once the output response is determined, the network

can further estimate the system parameter.

The proposed method is verified through a nonlinear duffing

oscillator and a cantilever beam. The results demonstrate its

capability to identify the impact load from the response while

considering the indeterminacy of system parameter, and to

determine the system parameter in reverse when the impact

load is estimated.

II. 1D-CNN BASED IMPACT LOAD AND SYSTEM

PARAMETER IDENTIFICATION

A. The Proposed Method

For a dynamic system

dy/dt = fθ(y, u) = f(y, u; θ), (1)

where u, y, and θ represent the system input, output, and

parameters, respectively, denoting the solution as

y = g(u; fθ), (2)

the key to identifying the impact load u from the measured

output y of the dynamic system fθ is to determine the inverse

transform

u = g−1(y; fθ). (3)

However, in a nonlinear system or an undetermined linear

system observed, g−1 is hard to obtain explicitly and directly.

So, a 1D-CNN layer based neural network is utilized in this

paper to represent g−1.

On account of the uncertainty of the structure itself, at the

stage of constructing the dataset, the input and output pairs

are calculated by taking different system parameters within a

certain range, as shown in Fig. 2. The dataset {(θi, ui, yi)} is

utilized in two aspects (Fig. 1(a)), one is to train the impact

load identification network Nu and another is to train the

system parameter identification network Nθ. The impact load

identification network Nu could be regarded as a superset of

many possible system models, and the distribution of system

parameters is embedded in the network. The architectures of

networks will be introduced in the following sections II-B and

II-C. When finishing the training of the two networks, they can

be used to identify the impact load and system parameter as

shown in Fig. 1(b).

Fig. 2 Construction of dataset

B. Impact Load Identification Network

The impact load identification network, Nu, consists of

three CNN blocks and flows with a ReLU activate function

(Fig. 3). Two skip connections are added between the CNN

blocks, as drawn in the figure. Each CNN block, detailed in the

enlarged box, consists of a 1D-CNN layer with a kernel size

Ki that maps the channels from C to Oi, followed by a ReLU

layer, and another 1D-CNN layer with the same kernel size

Ki that maps the channels from Oi back to C. Zero padding

is adopted in each 1D-CNN layer to maintain the sequence

length L unchanged. To finally determine the network, the

size parameters {O1,K1︸ ︷︷ ︸
1st block

;O2,K2︸ ︷︷ ︸
2nd block

;O3,K3︸ ︷︷ ︸
3rd block

} need to be set.

The loss function is defined as the mean square root (MSE)

of the predicted and the true impact loads as

Lu =
1

N

N∑
i=1

⎛
⎝ 1

CL

C∑
j=1

L∑
k=1

(
ûi
j,k − ui

j,k

)2
⎞
⎠ (4)

where N is the total number of samples, C is the number of

channels, and L is the length of the sequence of the impact

load time-history.
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Fig. 3 Impact load identification network Nu

C. System Parameter Identification Network

The system parameter identification network, Nθ, maps

the concatenate of the input and output (with multi-channel

input/output requiring vectorization) to the desired parameter.

The network consists of three sets of 1D-CNN layer and ReLU

layer, followed by a final linear layer (Fig. 4). The three

1D-CNN layers, each with a kernel size of K, transform the

channels from 1 to O and back to 1, as depicted in the figure.

In order to gradually reduce the dimensionality, a stride of

size S is utilized in the 1D-CNN layers. The input size of the

linear layer is derived accordingly. To completely determine

the network, the parameters {O,K, S} need to be set.

R
eL

U

1D
-C

N
N

R
eL

U

1D
-C

N
N

Li
ne

ar

1D
-C

N
N

R
eL

U Predicted

Concatenate of 
input and output

Fig. 4 System parameter identification network Nθ

The loss function is defined as the MSE of the predicted

and the true system parameters as

Lθ =
1

N

N∑
i=1

(
θ̂i − θi

)2

(5)

where N is the total number of samples.

III. NUMERICAL EXPERIMENT

To generate the dataset {(θi, ui, yi)}, three kinds of impact

loads, triangular, half-sine[10], and Gaussian [12] forms are

utilized (Fig. 5). The expressions are written in (6), (7), and

(8), respectively.

utri(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t < ta, t ≥ tb

pmax (t− ta) / (tc − ta) , ta ≤ t < tc,

pmax (tb − t) / (tb − tc) , tc ≤ t < tb,
(6)

(b) Half-sine (c) Gaussian

Fig. 5 Forms of impact loads considered

where ta and tb are the start time and stop time of the impact

load, and tc is the time corresponding to the maximum impact

load pmax.

usin(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t < ta, t ≥ tb

pmax sin (2πω1 (t− ta)) , ta ≤ t < tc,

pmax sin (2πω2 (t− 2tc + tb)) tc ≤ t < tb,
(7)

where ω1 := 1/4(tc − ta) and ω2 := 1/4(tb − tc).

uGau(t) = pmax exp
(
− (t− tc)

2
/
(
2σ2

))
(8)

where σ is the standard deviation of the Gaussian distribution.

These impact load expressions are parameterized, and the

parameters are uniformly sampled in the corresponding range

ta ∼ U(0, 0.1),

tb ∼ ta + U(0.01, 0.1),

tc ∼ U(ta, tb),

pmax ∼ U(100, 1000),

σ ∼ U(0.005, 0.01).

(9)

A. Duffing Oscillator

The duffing oscillator expressed as

mÿ + cẏ + κy + αy3 = u(t) (10)

is utilized to valid the proposed method, where the parameters

are specified as m = 1, κ = 10000, α = 10000, and c is

uniformly sampled from U(1, 10). The force u is sampled

from the three types of impact loads given by (6), (7), and

(8), with their respective parameters sampled according to

(9). A total of 3000 samples {(ci, ui, yi)} are generated. The

sampling frequency is 1000 Hz, and the analysis duration is

1 second.

The parameters for the impact load identification

network Nu are set as {O1,K1;O2,K2;O3,K3} =
{16, 128; 16, 64; 16, 32}, and for the parameter identification

network Nθ are set as {O,K, S} = {4, 64, 4}.

During the training of the networks Nu and Nθ, the dataset

is divided into training, validation, and testing sets with a

ratio of 70%:15%:15%. The batch sizes are set to 20 and

10, respectively. The Adam optimizer [16] is used. The initial

learning rate is set as 0.001 and it decreases by a factor of 0.95

when the current loss on the validation dataset exceeds the

World Academy of Science, Engineering and Technology
International Journal of Structural and Construction Engineering

 Vol:18, No:7, 2024 

258International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 S
tr

uc
tu

ra
l a

nd
 C

on
st

ru
ct

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

7,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
8.

pd
f



Fig. 6 Training process of the duffing oscillator case

previous one. Once the learning rate is lower than 0.000001,

it will stop decreasing.

Fig. 6 plots the training and validation losses. After about

200 epochs, the losses tend to converge. The results of the

trained networks on the test dataset are shown in Fig. 7. The

MSE and relative error (RE) are defined as

MSE = ‖û− u‖22/‖u‖22 × 100%, (11)

and

RE = |θ̂ − θ|/θ × 100%. (12)

It is observed that the maximum MSE of impact load

identification is about 10%, with a mean MSE of 0.50% across

450 tests. The maximum RE for identifying the parameter c
is about 20%, with a mean RE of 2.19%.

（ ）

（ ）

Fig. 7 Test results of the duffing oscillator case

B. Cantilever Beam

In this section, a cantilever beam (Fig. 8) is analyzed.

The structural parameters are listed in TABLE I. Forward

computations for preparing the dataset are carried out using

finite element method (FEM). The beam is divided into 20

elements, and the nodes 5, 9, 13, 17, and 21 are observed.

In the FEM model, Rayleigh damping is adopted, and

regard the damping ratio c is treated as an uncertain system

Single-input multi-output

Potential impact location

#5 #9 #13 #17 #21

Fig. 8 The cantilever beam model

TABLE I
PARAMETERS OF THE CANTILEVER BEAM

Length Width Height Young’s modulus Mass

5.0m 0.4m 0.2m 205GPa 2450kg/m3

parameter. Parameter c is sampled from a uniform distribution

U(0.001, 0.05); the impact load is sampled in the same way in

Section III-A and randomly applied to one of the five observed

nodes, with the other nodes set to zero. The responses at all

five observed nodes are measured, resulting in a total of 10000

samples {(ci, ui, yi)}. The sampling rate is 1000 Hz, and the

total analysis duration is 0.5 second.

The parameters of network Nu and Nθ are also set

as {O1,K1;O2,K2;O3,K3} = {16, 128; 16, 64; 16, 32} and

{O,K, S} = {4, 64, 5}, respectively. The related settings of

network training are kept consistent with those used in the

case of duffing oscillator (see Section III-A).

The training and validation losses are plotted in Fig. 9. After

about 300 epochs, the losses have converged.

Fig. 9 Training process of the cantilever beam case

Fig. 10 shows the test results of this example. It suggests

that the maximum MSE of the impact load identification is

about 10%, with a mean MSE of 0.18% across 1500 trials. The

maximum identification RE of the damping ratio c exceeds

50%, but the mean RE is 2.55%. In this case, the input

dimension resulting from the concatenation of input load and

output response is 5×1000×0.5×2 = 5000. This is relatively

large, posing challenges for the fitting and generalization of

the network.

Fig. 11 dives into the results of two specific tests. The

predicted waveform of impact load closely match the truth,

and the method can accurately locate the position of impact

load.
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Fig. 10 Test results of the cantilever beam case

Fig. 11 Diving into the results of two tests of the cantilever beam case

IV. CONCLUSION

This paper proposes a method using a 1D-CNN based

neural network to identify impact loads while considering the

uncertainty of system parameters. Additionally, it introduces

an approach to estimate the unknown system parameter

based on the identified impact load and the measured

response utilizing another 1D-CNN based neural network.

Two numerical examples, i.e., a nonlinear single-DOF duffing

oscillator and a 5-DOF linear cantilever beam, are utilized to

validate the method. On the testing dataset, the mean MSEs

of impact load identification in the two cases are 0.50% and

0.18%, respectively, and the mean REs of system parameter

identification are 2.19% and 2.55%, respectively.

In future work, we will investigate the proposed method’s

robustness to noise and evaluate its performance on

experimental and realistic structures.
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