
Abstract—In this article, the phenomenon of nonlinear
consolidation in saturated and homogeneous clay layer is studied. 
Considering time-varied drainage model, the excess pore water 
pressure in the layer depth is calculated. The Generalized Differential 
Quadrature (GDQ) method is used for the modeling and numerical 
analysis. For the purpose of analysis, first the domain of independent 
variables (i.e., time and clay layer depth) is discretized by the 
Chebyshev-Gauss-Lobatto series and then the nonlinear system of 
equations obtained from the GDQ method is solved by means of the 
Newton-Raphson approach. The obtained results indicate that the 
Generalized Differential Quadrature method, in addition to being 
simple to apply, enjoys a very high accuracy in the calculation of 
excess pore water pressure.

Keywords—Generalized Differential Quadrature method, 
Nonlinear consolidation, Nonlinear system of equations, Time-varied
drainage

I. INTRODUCTION

UMERICAL models of soil consolidation have initially 
been developed from the noted classical theory of 

Terzaghi dating back to 1923 [1]. In the Terzaghi theory, the 
magnitude of the load and the coefficients of consolidation and 
impermeability have been considered constant throughout the 
clay layer; whereas these parameters could vary within the 
layer, due to the type of soil and the history of loading.

Generally, the models related to the study of clay layer 
consolidation phenomenon, assume constant properties for the 
soil throughout the layer; however, experimental findings 
indicate nonlinear and inhomogeneous behaviors, which 
cannot be explained by simple models. In 1967, Gibson et al.
published their findings regarding the need to consider 
appropriate assumptions, which take into account the changing 
properties of soil, for the consolidation models based on the 
developed technical model of Terzaghi [2]. 

    In 1969, Poskitt studied the consolidation of saturated 
clay layers with variable characteristics of permeability and 
compressibility, and presented remarkable results [3]. In 1994, 
Cornetto and Battaglio presented several nonlinear
consolidation models for soils and also offered techniques for 
their analysis [4]. Then in 1996, Arnod et al. presented their 
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theory of nonlinear consolidation models of soils and the 
effective parameters needed for their analysis [5].

    In the past years, researchers like Battaglio et al. have 
conducted studies on the subject of nonlinear consolidation 
models of clay which changed type from the normal to over 
consolidation stated; and they have associated this change of 
state with the critical value of excess pore water pressure of 
the clay layer during consolidation, which itself is highly 
influenced by different boundary conditions at the top and 
bottom of the layer [6]. Bonzani and Lancellotta studied the 
relations and differential equations governing the phenomenon 
of nonlinear consolidation, and described the parameters 
affecting this phenomenon [7]. Battaglio et al. used the 
Generalized Collocation Method and the parameters of 
London clay soil to solve the partial differential equation 
governing the one-dimensional nonlinear consolidation of clay 
layers with time-dependent drainage conditions, and presented 
their findings in the form of simultaneous diagrams indicating 
the amount of excess pore water pressure throughout the clay 
layer [8].

    The most common numerical analysis methods for partial 
differential equations are the Finite Element Method and the 
Finite Difference Method, which require a large number of 
grid points in order to achieve acceptable results and the 
desired accuracy; and sometimes the computational cost 
increases due to the complexity of the problem. Since in this 
research, the Generalized Differential Quadrature method is 
used for the numerical analysis of the problem, this numerical 
approach is briefly described and its characteristics and 
limitations are pointed out.

    The Differential Quadrature Method (DQM) was initially 
used by Bellman and Casti in 1971 as a numerical approach 
for solving partial differential equations [9]. In this method, 
the partial derivatives of the function at one point along a 
specific direction are expressed in terms of the linear weighted 
sum of function values at all the nodal points along the same 
direction and throughout the computational domain. This 
method has gained a growing popularity, since it is based on 
the idea of integral quadrature, and also because it produces 
highly-accurate results and is simple to use. The only 
limitation of this method is in the estimation of weight 
coefficients that are used for the interpolation of a function’s 
derivatives. To improve the estimation of weight coefficients, 
Quan and Chang used the Lagrange’s interpolating 
polynomials to obtain an appropriate formula for the 
calculation of weight coefficients of the first and second order 
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derivatives [10]. The use of this method makes it impossible to 
increase the number of grid points, and sometimes leads to the 
use of different mesh configurations when applying different 
boundary conditions. To remove these obstacles, Shu and 
Richard used the Generalized Differential Quadrature to solve 
fluid dynamics equations [11]. The results obtained from this 
method indicated the fact that this method, in spite of being 
simple to apply, does not have the problems associated with 
the DQM.

    Normally, the Generalized Differential Quadrature 
(GDQ) method is based on the idea that the partial derivative 
of a function is approximated at a specific point of the problem
interval as the weighted algebraic sum of function values at all 
discretized points of the whole region. These coefficients are 
obtained through the relation presented by Shu and Richard, 
and the coefficients of diagonal and nondiagonal members 
related to the matrix of weighted coefficients of different order 
derivatives are calculated with the help of Lagrange’s 
interpolating functions [11].

    In the year 2000, Shu presented a comprehensive 
introduction of the Differential Quadrature Method and 
described the merits and capabilities of this numerical method 
in analyzing the partial differential equations governing the 
engineering problems [12]. The new and advanced capabilities 
of this approach can also be found in [13].

II.NUMERICAL METHOD OF GDQ        

    In this numerical method, after dividing the considered 
domain into a number of points termed nodes, the function 
derivative is calculated with respect to the independent 
variable at each of these nodes versus weighted algebraic sum 
of function values on all the points of the considered domain. 
In this approach, the function derivative ( f ) is defined as a 
function of x :

( ) ( )

1
( )                 1,..., 1.

N
n n

x ij j
j

f A f x n N (1)

   The weight coefficients used in this method for the first-
order derivative along the x-axis are obtained through the 
following relation:

(1) ( )
        , 1,..., .

( ) ( )
i

ij x
i j j

M XA i j N j i
X X M X (2)

In the (2):

1
( ) ( ).

xN

i i j
j
j i

M X X X (3)

And for the higher order derivatives:

( 1)
( ) ( 1) (1)( )          , 1,..., ,

n
ijn n

ij ii ij x
i j

A
A n A A i j N j i

X X (4)

( ) ( )

1
j i

1,...,
        .

1,2,..., 1

xN
xn n

ii ij
j x

i N
A A

n N (5)

For example, by choosing five nodes, the matrix form of the 
first-order derivative of function f along the x-axis is 
obtained as:

            
(1) (1) (1) (1) (1)
11 12 13 14 151
(1) (1) (1) (1) (1)
21 22 23 24 252
(1) (1) (1) (1) (1)
31 32 33 34 353
(1) (1) (1) (1) (1)
41 42 43 44 454
(1) (1) (1) (1) (1)
51 52 53 54 555

A A A A Af
A A A A Af

f A A A A Af
x x

A A A A Af
A A A A Af

1

2

3

4

5

.

f
f
f
f
f

    One of the important and effective issues in the 
convergence and accuracy of calculations in the GDQ method 
is the choosing of proper distance between nodal points for the 
mesh configuration of the considered region. The following 
relations indicate how this selection is made:

a) Points with equal distances:

1                 1,..., .
1i x

iX a i N
N

(6)

b) Points with unequal distances:

11 cos( )           1,..., .
2 1i x

x

a iX i N
N (7)

   In the (6), and (7), “ a ” denotes the length of the 
considered interval along the x direction, and xN represents
the number of nodes along the same direction. These points 
are known as Chebyshev-Gauss-Lobatto points. The above 
division was first proposed by Richards and Shu [11]. 
Research works demonstrate that by using the mentioned 
division, results with higher accuracy could be achieved. 
Therefore in this study, this type of division is employed.

III. ONE-DIMENSIONAL NONLINEAR CONSOLIDATION
PHENOMENON      

In 2005, Battaglio et al. presented the partial differential 
equation governing the nonlinear consolidation of clay soil 
that leads to the change of soil type from the over consolidated 
state to the normally consolidated state, and evaluated a 
special case related to the parameters of London clay soil [8]. 
The governing assumptions in this study are:
1. Time and the length of the saturated clay layer are the 

independent variables, and the excess pore water pressure 
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caused by external loading is the dependent variable. The 
problem is analyzed in one dimension; therefore, the soil 
layer is confined on the sides and drainage is only 
achieved perpendicularly. 

2. The total vertical stress c generated by the external load is 
constant in time, the soil is completely saturated, and soil 
components and the existing pore water in the soil behave 
as an incompressible layer.

3. The weight of soil grains and of the existing water has been 
disregarded, and a constant volume has been considered 
for the studied soil.

4. Darcy’s law governs the displacement of water in the soil 
layer.

    In view of these assumptions, (8), expresses the 
relationship between void ratio ( e ) and effective stress ( )

and coefficient of permeability ( k ).

log( ) log( ).o c o k
o o

ke e I e C
k (8)

    In the (8), cI is the compressibility index, kC is the 
permeability index, and oe and ok corresponding to the initial 
value of effective stress ( o ).

    Arnod et al. introduced the effective parameters of 
nonlinear consolidation as follows [5]:

0

0 0

,     1 ,     .
1

fc c

k

I I
e C (9)

    In normal modeling of the consolidation phenomenon, the 
above parameters are considered constant throughout the 
process. However, when the change of soil type occurs, 
experimental findings indicate considerable variation in 
parameter , from its highest value ( M ) in normally 
consolidated soil to its lowest ( m ) in over consolidated soil, 
which these changes are associated with the critical value of 
excess pore water pressure ( cu ).

    Battaglio et al. considered large but discontinuous 
changes for the above parameters throughout the nonlinear
consolidation phenomenon, and presented the following 
function for the simulation of experimental data [6]:

1

2

( )
( ) ,

( )
c

c m
c

S u u
u u

S u u (10)

where

1
( ) ( )

( ) exp exp ,
1

c c
c M

u u u uS u u
u u

(11)

and

2
( ) ( )

( ) exp exp ,
1

c c
c m

u u u uS u u
u u

(12)

in the (11), and (12), is a suitable positive parameter. The 
slope of the changes of with respect to u is obtained by 
taking the derivative of (10), as follows:  

2
2

2 2

1( ; , ) ( )
( )

( )(1 2 ) (1 )
exp .

(1 ) (1 )

c m m M

c c c

u u
S u

u u u u u
u u u u

(13)

   In their research, Battaglio et al. had assumed the two 
parameters of and to be constant throughout the 
consolidation process [6]. In fact, in consideration of empirical 
results, the ratio of c kI C is considered constant in many 
practical cases; because the permeability index ( kC ) shows 
many similar changes with cI in connection with the critical 
value of excess pore water pressure ( cu ).

    In view of the effective variables, parameters and 
assumptions, the mass balance equation corresponding to the 
nonlinear consolidation process can be presented.     

10

1

( ) ( ),
1

log ,
1

,

1 (1 ).

o

o

o

e k u
t e x k x

e e
e

k
k

u

(14)

    Where 10o Mk k ln . The first relation expresses the 
mass balance equation with regards to Darcy’s law. The 
second and third relations express (8), with new parameters. 
Since the relationship between the normal effective stress and 
excess pore water pressure is expressed by .f c u
and represents the ratio o , the fourth relation can be 
derived.

    Considering the equations presented in (14), the 
differential equation related to excess pore water pressure in 
the nonlinear consolidation process is expressed as follows: 

          

.u
t t

(15)

Relation (15), is an immediate outcome of the equations 
presented in (14), and regarding the nonlinear consolidation 
phenomenon in saturated clay layers in which the soil type 
changes, Battaglio et al. have presented the following 
nonlinear partial differential [8]:
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2
2

2

( ) ( ) ( ; ) ln( ( ; ))

( ) ( )( ) .

Mu
t u u u u

u uh u p u
xx

(16)

   The values of ( )u and ( )u have already been given in

the (10), and (13), respectively. In (16), ( )h u and ( )p u are
obtained through the relations below:

2
10( ) (1 )[1 ( ) log ] ,

( ) (1 ) ( ),

oh u e u

p u h u
(17)

by considering the constant value of M in a special 
case, Battaglio et al. expressed (16), as a dimensionless 
relation for the nonlinear consolidation of saturated clay layers 
[6], [8]:

2
2

2( ) ( )( ) ,u u uh u p u
t xx

(18)

in the (18), ( )h u and ( )p u have already been defined by 
(17), u denotes the excess pore water pressure, t is the time 
and x is the vertical distance in the soil layer.

    In this phenomenon, the dependent variable of excess pore 
water pressure ( u ) is associated with the independent 
variables of time ( t ) and vertical coordinate in the soil layer 
( x ). The analysis of (18), is performed in one dimension; 
meaning that the soil is assumed to be confined from the sides 
and drainage is achieved only in the vertical direction. All the 
assumptions of the Terzaghi consolidation phenomenon 
govern this phenomenon as well, and parameters and
have been considered constant during the consolidation 
process. In this study, a case of boundary conditions, which 
represents the manner of clay layer drainage at different times, 
is evaluated. The amount of excess pore water pressure at 
different times is calculated by the Generalized Differential 
Quadrature (GDQ) method, and presented as simultaneous 
diagrams.

    In solving partial differential equations with time 
derivatives through the GDQ numerical method, by 
discretizing the domains of the other independent variables 
(such as length) and obtaining the matrices of weight 
coefficients and inserting them into the partial differential 
equation (PDE) that governs the problem, this partial equation 
can be converted into an ordinary differential equation (ODE) 
system, as follows:

2 2 ,
d u

A u B u
dt

(19)

in this relation, by discretizing the independent variable of 
length into N nodes, matrices A and B with the N N
dimension and matrix u with the 1N dimension will be 
obtained, and the weight coefficient matrices A and B will 
be formed by relations associated with the second-order and 
first-order derivatives, respectively.

    The obtained system of ordinary differential equations can 
be analyzed by ordinary differential equation solution methods 
such as the Rung-Kutta and Finite Difference Methods. 
However in this research, to solve the governing differential 
equation, the domains of both independent variables, i.e., 
length ( x ) and time ( t ), are discretized by means of points 
with unequal distances into N and M nodes, respectively, 
and the matrices of weight coefficients are calculated with 
regards to the number of nodes and the domain lengths of 
independent variables, and are substituted into the governing 
differential equation. Thus, a N M grid is formed to obtain 
the final solutions.

    To analyze the partial differential equation governing the 
nonlinear consolidation process by the Generalized 
Differential Quadrature method, after discretizing the domain 
of independent variables into nodes with unequal distances 
from one another, the following procedure is implemented:

2
2

2( ) ( )( )u u uh u p u
t xx

(20)

(2) (1) 2 2

1 1

(1) (2) (1) 2 2

1 1 1

( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) 0

1,2, ,      1, 2, , ,

N N

ik kj ik ki
k k

M N N

jk kj ik kj ik ki
k k k

u h u A u p u A u
t

A u h u A u p u A u

i N j M

(21)

in the (21), (1)
ikA are the first-order derivative weight 

coefficients, (2)
ikA are the second-order derivative weight 

coefficients of u with respect to the length axis, and (1)
jkA are

first-order derivative weight coefficients of u with respect to 
the time axis.

    The proper substitution of boundary conditions is very 
important in obtaining an accurate final solution. In view of 
the initial and boundary conditions associated with the manner 
of drainage of saturated clay layers in the nonlinear
consolidation phenomenon, and considering the nonlinearity of 
the governing equation, the following nonlinear system of 
equations is obtained:    

          
.K u f (22)

   By solving this nonlinear system of equations through the 
Newton-Raphson numerical approach, the value of the 
unknown dependent variable ( u ) at each node of the 
problem’s grid system is obtained.
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IV. NUMERICAL PROBLEM      

    In this section, an example of the drainage conditions 
corresponding to the relations and equations presented in the 
previous chapter is reviewed and analyzed. This problem has 
been chosen due to its attractiveness and applicability in 
geotechnical engineering. First, the problem is described and 
then, the governing boundary and initial conditions of the 
problem relevant to the partial differential equation are 
discussed. It should be mentioned that these conditions are 
associated with the drainage conditions of the saturated clay 
layer, and they vary with time. With the help of unequal 
distance points, or the Chebyshev-Gauss-Lobatto series, the 
domains of independent variables (i.e., length ( x ) and time 
( t )) are discretized. Then, considering the number and value 
of nodes within the range of independent variables, the 
matrices of weight coefficients corresponding to the governing 
equations are established using the relations cited in the 
previous chapters, and by combining and rearranging them, a 
system of nonlinear equations is obtained and solved through 
the Newton-Raphson numerical method. Following the 
numerical analysis of the problem and obtaining the final 
solution, simultaneous time history diagrams that show the 
amount of excess pore water pressure ( u ) at various points of 
the saturated clay layer with time-varied drainage conditions 
are presented and discussed. For the nonlinear consolidation 
example, the amount of excess pore water pressure ( u ) at 
various distances of the saturated layer and at different times is 
presented in a diagram; and in a separate diagram, the excess 
pore water pressure ( u ) in the middle of the layer is compared 
to the same parameter values at the boundaries of the clay 
layer; because in most of the problems related to clay layer 
consolidation process, in the middle of the layer values can 
provide good approximations. Finally, the obtained numerical 
results are compared to the results presented by Battaglio et al.
[8].

    The saturated clay layer has been confined from the top 
and bottom by sand layers, and the ground water level is at the 
surface of the ground, and Pore water pressure increases 
linearly with soil depth. By creating a water well to the lower 
part of the clay layer, the flow of water and the boundary 
conditions governing this phenomenon can be altered with 
time. The initial water level in the upper sand layer remains 
fixed; but in the lower sand layer, pore water pressure will 
decrease relative to water flow in the well. The initial and
Dirichlet boundary conditions relevant to this problem [8] are:

(0, ) 1     [0,1],u x x (23)

( ,0) 0   0,      

( ,1) 0.1(1 )   0.ct

u t t
u t e t

(24)

    The existence of parameter t in the (24), changes these 
relations throughout the consolidation process. By considering 
the numerical values of 7c in the (24), and analyzing the 

governing equation by means of the Generalized Collocation 
Method with regards to the boundary and initial conditions, 
Battaglio et al. presented the simultaneous diagrams of excess 
pore water pressure associated with this problem [8]. In this 
research, with regards to the mentioned initial condition and 
boundary conditions, the numerical method of Generalized 
Differential Quadrature (GDQ) has been used to obtain the 
concurrent curves of excess pore water pressure at various 
points of the clay layer, according to Fig. 1.

U

X

0 0.4 0.8 1.2 1.6

0

0.2

0.4

0.6

0.8

1

t = 0.00
t = 0.04
t = 0.07
t = 0.10
t = 0.13
t = 0.17
t = 0.25
t final

Fig. 1 Simultaneous curves of excess pore water pressure of clay 
layer

The concurrent curves of Fig. 1 indicate that due to the 
excess pore water pressure remaining constant at the top 
boundary of the clay layer, the excess pore water pressure 
decreases at the bottom boundary and various point of the clay 
layer, shortly after the start of the consolidation process, but it 
is not totally eliminated.

For the comparison of analysis results and the degree of 
convergence of the GDQ, TABLE I has been provided.

TABLE I
U VALUES OBTAINED FROM THE GDQ METHOD IN THE MIDDLE OF THE 

LAYER,
AT t = t final, FOR DIFFERENT NUMBERS OF NODES.

N : 5 6 7 8
U : 0.053 0.052 0.052 0.052

   TABLE I shows that by using the GDQ method, it is 
possible to estimate the excess pore water pressure up to three 
decimal places. It is also observed that through this method, 
relatively identical values have been obtained in the middle of 
the layer, at t = t final, for different numbers of nodes, which is 
due to the use of the Chebyshev-Gauss-Lobatto series. 
Applying the Generalized Collocation Method, Battaglio et al.
obtained a value of 0.05 for U [8], which has a good 
agreement with the values obtained through the GDQ method 
for various node quantities.

In the following diagrams, the amount of excess pore water 
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pressure at various distances from the surface of the saturated 
clay layer has been shown during the consolidation process; 
and the nonlinear changes of excess pore water pressure are 
clearly visible. 

time

U

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2 Changes of excess pore water pressure in clay layer at X = 0.1

time

U

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 3 Changes of excess pore water pressure in clay layer at X = 0.3

time

U

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4 Changes of excess pore water pressure in clay layer at X = 0.5

time

U

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5 Changes of excess pore water pressure at the bottom boundary 
of clay layer

    Fig. 6 shows the changes and comparison of pore water 
pressure in the middle and at the bottom boundary of clay 
layer within the time interval. As is obvious in this example, 
changes are very little at the bottom boundary and initially 
after the start of the consolidation process, large changes occur 
in the middle of the layer, but as time passes, these changes 
diminish; and there are minor changes of excess pore water 
pressure in the second half of the considered time interval, 
while these changes are quite substantial in the first half of the 
said interval. Based on the presented figures, contrary to the 
Terzaghi consolidation phenomenon, in the nonlinear
consolidation process, the pore water pressure produced 
throughout the saturated clay layer as a result of external 
loading is never eliminated, even when the consolidation 
process stops.   

time

U

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Middle of Layer
Bottom Boundary

Fig. 6 Changes of excess pore water pressure in the middle and at the 
bottom boundary of clay layer
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V.CONCLUSION

    In this article, the nonlinear consolidation process in a 
saturated clay layer subjected to time-varied drainage 
conditions has been studied, and numerically analyzed. Since 
the analytical solution of the nonlinear partial differential 
equation governing this phenomenon is time-consuming, the 
relatively new numerical method of Generalized Differential 
Quadrature (GDQ) has been used to obtain the amount of 
excess pore water pressure at various points of the saturated 
clay layer at different times. The high accuracy and simple 
computational procedure of this approach in obtaining the 
solution to the presented problem was verified in this paper. 
An important numerical example in the area of geotechnical 
engineering was reviewed; the partial differential equation 
governing this problem was presented; and its relevant initial 
and boundary conditions was described. The Chebyshev-
Gauss-Lobatto series were used to discretize the domains of 
independent variables, namely, length and time, which based 
on the previous experiences, resulted in improved accuracy 
and reduced time in the convergence of solutions. The findings 
indicate that there is very good agreement between the values 
of excess pore water pressure in the middle of the clay layer 
obtained from the GDQ and Generalized Collocation Method, 
Battaglio et al. [8], with the difference that the GDQ method 
has yielded more accurate values of excess pore water 
pressure, compared to the Generalized Collocation Method. 
Also in this approach, the answers for different numbers of 
nodes are almost identical. The diagrams and results presented 
in this research indicate a major difference between the linear 
and nonlinear consolidation phenomena in saturated clay 
layers under time-dependent drainage conditions. In view of 
the special physics of this problem, the excess pore water 
pressure created in the saturated clay layer under external 
loading conditions diminishes with time, but never goes away 
completely.
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