Search results for: Fracture Tests: mode I (DCB) and mode II (ENF)
2230 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System
Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith
Abstract:
This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.Keywords: Exoskeleton-upper limb system, gravity compensation, model free terminal sliding mode, robustness analysis, Monte Carlo, H∞ methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7372229 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20032228 Impedance Matching of Axial Mode Helical Antennas
Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco
Abstract:
In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.
Keywords: Antenna, helix, helical, axial mode, wireless power transfer, impedance matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8892227 PI Controller for Automatic Generation Control Based on Performance Indices
Authors: Kalyan Chatterjee
Abstract:
The optimal design of PI controller for Automatic Generation Control in two area is presented in this paper. The concept of Dual mode control is applied in the PI controller, such that the proportional mode is made active when the rate of change of the error is sufficiently larger than a specified limit otherwise switched to the integral mode. A digital simulation is used in conjunction with the Hooke-Jeeve’s optimization technique to determine the optimum parameters (individual gain of proportional and integral controller) of the PI controller. Integrated Square of the Error (ISE), Integrated Time multiplied by Absolute Error(ITAE) , and Integrated Absolute Error(IAE) performance indices are considered to measure the appropriateness of the designed controller. The proposed controller are tested for a two area single nonreheat thermal system considering the practical aspect of the problem such as Deadband and Generation Rate Constraint(GRC). Simulation results show that dual mode with optimized values of the gains improved the control performance than the commonly used Variable Structure .
Keywords: Load Frequency Control, Area Control Error(ACE), Dual Mode PI Controller, Performance Index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21152226 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System
Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres
Abstract:
One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19412225 Sliding Mode Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzan Tabar, Mohammad Azadi, Alireza Alesaadi
Abstract:
This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.
Keywords: Lyapunov stability, autonomous underwater vehicle (AUV), sliding mode controller, electronics engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25992224 Sliding Mode Based Behavior Control
Authors: Selim Yannier, Asif Sabanovic, Ahmet Onat, Muhammet Bastan
Abstract:
In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.Keywords: Autonomous Mobile Robot, Behavior Based Control, Fast Local Obstacle Avoidance, Sliding Mode Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17532223 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment
Authors: Sudipta Majumdar, Amarendra Kumar Mishra
Abstract:
This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12872222 Double Manifold Sliding Mode Observer for Sensorless Control of Multiphase Induction Machine under Fault Condition
Authors: Mohammad Jafarifar
Abstract:
Multiphase Induction Machine (IM) is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper we discuss the performance of double manifold sliding mode observer (DM-SMO) in Sensorless control of multiphase induction machine under unsymmetrical condition (one phase loss). This observer is developed using the IM model in the stationary reference frame. DM-SMO is constructed by adding extra feedback term to conventional single mode sliding mode observer (SM-SMO) which proposed in many literature. This leads to a fully convergent observer that also yields an accurate estimate of the speed and stator currents. It will be shown by the simulation results that the estimated speed and currents by the method are very well and error between real and estimated quantities is negligible. Also parameter sensitivity analysis shows that this method is rather robust against parameter variation.Keywords: Multiphase induction machine, field oriented control, sliding mode, unsymmetrical condition, manifold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18172221 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation
Authors: Niloufar Ghoreishi, Ali Nekouzadeh
Abstract:
The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.
Keywords: Flight stability, phugoid mode, short period mode, climb phase, damping coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052220 A Current-mode Continuous-time Sigma-delta Modulator based on Translinear Loop Principle
Authors: P. Jelodarian , E. Farshidi
Abstract:
In this paper, a new approach for design of a fully differential second order current mode continuous-time sigma-delta modulator is presented. For circuit implementation, square root domain (SRD) translinear loop based on floating-gate MOS transistors that operate in saturation region is employed. The modulator features, low supply voltage, low power consumption (8mW) and high dynamic range (55dB). Simulation results confirm that this design is suitable for data converters.Keywords: Sigma-delta, current-mode, translinear loop, geometric mean, squarer/divider.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722219 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9082218 The Analysis of Teacher Talk in "Learner-centered" Teaching Mode
Authors: Haiyan Wang
Abstract:
Being main teaching media and major source of comprehensive target language input, teacher talk plays an important role in learners' second-language acquisition. Under the trend of "learner-centered" teaching mode, some researchers think that the best teacher talk means less. But the author holds that, in Chinese second language classroom, it is not advisable to lay too much stress on the formal students' participation, which requires the teacher to say as little as possible and the student to say as much as possible. The emphasis should be put on how to raise teacher talk's quality.
Keywords: Comprehensive language input, "learner-centered" teaching mode, teacher talk, teacher talk's quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41942217 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.
Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24502216 Application of a Fracture-Mechanics Approach to Gas Pipelines
Authors: Ľubomír Gajdoš, Martin Šperl
Abstract:
This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29472215 Characterization of InGaAsP/InP Quantum Well Lasers
Authors: K. Melouk, M. Dellakrachai
Abstract:
Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.Keywords: Laser, quantum well, semiconductor, InGaAsP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21482214 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based On Passivity Approach
Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee
Abstract:
In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.
Keywords: Adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21302213 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502212 General Purpose Pulse Width Modulation Based Sliding Mode Controller for Buck DC-DC
Authors: M.Bensaada , A.Boudghene Stambouli , M.Bekhti, A. Bellar, L. Boukhris
Abstract:
This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.
Keywords: Buck, DC/DC converters, sliding mode control, pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26832211 Modeling and Simulation of Delaminations in FML Using Step Pulsed Active Thermography
Authors: S. Sundaravalli, M. C. Majumder, G. K. Vijayaraghavan
Abstract:
The study focuses to investigate the thermal response of delaminations and develop mathematical models using numerical results to obtain the optimum heat requirement and time to identify delaminations in GLARE type of Fibre Metal Laminates (FML) in both reflection mode and through-transmission (TT) mode of step pulsed active thermography (SPAT) method in the type of nondestructive testing and evaluation (NDTE) technique. The influence of applied heat flux and time on various sizes and depth of delaminations in FML is analyzed to investigate the thermal response through numerical simulations. A finite element method (FEM) is applied to simulate SPAT through ANSYS software based on 3D transient heat transfer principle with the assumption of reflection mode and TT mode of observation individually.
The results conclude that the numerical approach based on SPAT in reflection mode is more suitable for analysing smaller size of near-surface delaminations located at the thermal stimulator side and TT mode is more suitable for analysing smaller size of deeper delaminations located far from thermal stimulator side or near thermal detector/Infrared camera side. The mathematical models provide the optimum q and T at the required MRTD to identify unidentified delamination 7 with 25015.0022W/m2 at 2.531sec and delamination 8 with 16663.3356 W/m2 at 1.37857sec in reflection mode. In TT mode, the delamination 1 with 34954W/m2 at 13.0399sec, delamination 2 with 20002.67W/m2 at 1.998sec and delamination 7 with 20010.87 W/m2 at 0.6171sec could be identified.
Keywords: Step pulsed active thermography (SPAT), NDTE, FML, Delaminations, Finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25502210 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir
Abstract:
The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.
Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28942209 Implementation the Average Input Current Mode Control of Two-Phase Interleaved Boost Converter Using Low-Cost Microcontroller
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.
Keywords: Average input current mode control, interleaved boost converter, low-cost microcontroller, PI controller, switching function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13512208 Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA
Authors: P. Silapan, C. Chanapromma, T. Worachak
Abstract:
This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.Keywords: CFTA, Current-mode, Square-rooting Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14072207 A Low-Voltage Current-Mode Wheatstone Bridge using CMOS Transistors
Authors: Ebrahim Farshidi
Abstract:
This paper presents a new circuit arrangement for a current-mode Wheatstone bridge that is suitable for low-voltage integrated circuits implementation. Compared to the other proposed circuits, this circuit features severe reduction of the elements number, low supply voltage (1V) and low power consumption (<350uW). In addition, the circuit has favorable nonlinearity error (<0.35%), operate with multiple sensors and works by single supply voltage. The circuit employs MOSFET transistors, so it can be used for standard CMOS fabrication. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.Keywords: Wheatstone bridge, current-mode, low-voltage, MOS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30222206 Implementation of Second Order Current- Mode Quadrature Sinusoidal Oscillator with Current Controllability
Authors: Koson Pitaksuttayaprot, Winai Jaikla
Abstract:
The realization of current-mode quadrature oscillators using current controlled current conveyor transconductance amplifiers (CCCCTAs) and grounded capacitors is presented. The proposed oscillators can provide 2 sinusoidal output currents with 90º phase difference. It is enabled non-interactive dual-current control for both the condition of oscillation and the frequency of oscillation. High output impedances of the configurations enable the circuit to be cascaded without additional current buffers. The use of only grounded capacitors is ideal for integration. The circuit performances are depicted through PSpice simulations, they show good agreement to theoretical anticipation.Keywords: Current-mode, Oscillator, Integrated circuit, CCCCTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062205 A Digitally Programmable Voltage-mode Multifunction Biquad Filter with Single-Output
Authors: C. Ketviriyakit, W. Kongnun, C. Chanapromma, P. Silapan
Abstract:
This article proposes a voltage-mode multifunction filter using differential voltage current controllable current conveyor transconductance amplifier (DV-CCCCTA). The features of the circuit are that: the quality factor and pole frequency can be tuned independently via the values of capacitors: the circuit description is very simple, consisting of merely 1 DV-CCCCTA, and 2 capacitors. Without any component matching conditions, the proposed circuit is very appropriate to further develop into an integrated circuit. Additionally, each function response can be selected by suitably selecting input signals with digital method. The PSpice simulation results are depicted. The given results agree well with the theoretical anticipation.Keywords: DV-CCCCTA, Voltage-mode, Multifunction filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13572204 Fuzzy Boundary Layer Solution to Nonlinear Hydraulic Position Control Problem
Authors: Mustafa Resa Becan
Abstract:
Sliding mode control with a fuzzy boundary layer is presented to hydraulic position control problem in this paper. A nonlinear hydraulic servomechanism which has an asymmetric cylinder is modeled and simulated first, then the proposed control scheme is applied to this model versus the conventional sliding mode control. Simulation results proved that the chattering free position control is achieved by tuning the fuzzy scaling factors properly.
Keywords: Hydraulic servomechanism, position control, sliding mode control, chattering, fuzzy boundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18272203 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process
Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka
Abstract:
Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.
Keywords: Ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25912202 Static Modeling of the Delamination of a Composite Material Laminate in Mode II
Authors: Y. Madani, H. Achache, B. Boutabout
Abstract:
The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.
Keywords: Delamination, energy release rate, finite element method, stratified composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7092201 Multi-Objective Multi-Mode Resource-Constrained Project Scheduling Problem by Preemptive Fuzzy Goal Programming
Authors: Phruksaphanrat B.
Abstract:
This research proposes a preemptive fuzzy goal programming model for multi-objective multi-mode resource constrained project scheduling problem. The objectives of the problem are minimization of the total time and the total cost of the project. Objective in a multi-mode resource-constrained project scheduling problem is often a minimization of makespan. However, both time and cost should be considered at the same time with different level of important priorities. Moreover, all elements of cost functions in a project are not included in the conventional cost objective function. Incomplete total project cost causes an error in finding the project scheduling time. In this research, preemptive fuzzy goal programming is presented to solve the multi-objective multi-mode resource constrained project scheduling problem. It can find the compromise solution of the problem. Moreover, it is also flexible in adjusting to find a variety of alternative solutions.
Keywords: Multi-mode resource constrained project scheduling problem, Fuzzy set, Goal programming, Preemptive fuzzy goal programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758