Search results for: turbulent boundary layer
899 Modeling of Temperature Fields of Gas Turbine Blades by Considering Heat Flow and Specified Temperature
Authors: C. Ardil
Abstract:
A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.Keywords: Modeling of temperature fields, gas turbine blades, integral methods, cooled blades, gas turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661898 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.
Keywords: Acoustic Doppler Velocimeter, gravel-bed, spike removal, Reynolds shear stress, near-bed turbulence, velocity power spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180897 Positive Solutions for Boundary Value Problems of Fourth-Order Nonlinear Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special non-empty closed convex set and utilizing M¨onch fixed point theory, we investigate the existence of solution for a class of fourth-order singular differential equation in Banach space, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675896 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel
Authors: Tadahiro Wada, Koji Iwamoto
Abstract:
In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060895 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.
Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875894 Study of Damage in Beams with Different Boundary Conditions
Authors: Nilson Barbieri, Renato Barbieri
Abstract:
–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.Keywords: Damage, beam, PSO, bispectrum, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769893 Linear Elasticity Problems Solved by Using the Fictitious Domain Method and Total - FETI Domain Decomposition
Authors: Lukas Mocek, Alexandros Markopoulos
Abstract:
The main goal of this paper is to show a possibility, how to solve numerically elliptic boundary value problems arising in 2D linear elasticity by using the fictitious domain method (FDM) and the Total-FETI domain decomposition method. We briefly mention the theoretical background of these methods and demonstrate their performance on a benchmark.
Keywords: Linear elasticity, fictitious domain method, Total-FETI, domain decomposition, saddle-point system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581892 Effect of Atmospheric Turbulence on AcquisitionTime of Ground to Deep Space Optical Communication System
Authors: Hemani Kaushal, V.K.Jain, Subrat Kar
Abstract:
The performance of ground to deep space optical communication systems is degraded by distortion of the beam as it propagates through the turbulent atmosphere. Turbulence causes fluctuations in the intensity of the received signal which ultimately affects the acquisition time required to acquire and locate the spaceborne target using narrow laser beam. In this paper, performance of free-space optical (FSO) communication system in atmospheric turbulence has been analyzed in terms of acquisition time for coherent and non-coherent modulation schemes. Numerical results presented in graphical and tabular forms show that the acquisition time increases with the increase in turbulence level. This is true for both schemes. The BPSK has lowest acquisition time among all schemes. In non-coherent schemes, M-PPM performs better than the other schemes. With the increase in M, acquisition time becomes lower, but at the cost of increase in system complexity.Keywords: Atmospheric Turbulence, Acquisition Time, BinaryPhase Shift Keying (BPSK), Free-Space Optical (FSO)Communication System, M-ary Pulse Position Modulation (M-PPM), Coherent/Non-coherent Modulation Schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779891 Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates
Authors: A. Al-Shyyab, A. F. Khadrawi
Abstract:
The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as increases.Keywords: Converging plates, hydrodynamic behavior, microplates, microchannel, slip velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598890 Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters
Authors: B. Manshoor, N. Ihsak, Amir Khalid
Abstract:
The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.Keywords: Metal foam flow conditioner, flow measurement, orifice plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060889 Analytical Model for Predicting Whole Building Heat Transfer
Authors: Xiaoshu Lu, Martti Viljanen
Abstract:
A new analytical model is developed which provides close-formed solutions for both transient indoor and envelope temperature changes in buildings. Time-dependent boundary temperature is presented as Fourier series which can approximate real weather conditions. The final close-formed solutions are simple, concise, and comprehensive. The model was compared with numerical results and good accuracy was obtained. The model can be used as design and control guidelines in engineering applications for analysing mechanical heat transfer properties for buildings.Keywords: Analytical model, heat transfer, whole building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043888 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel
Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi
Abstract:
The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772887 Searching the Efficient Frontier for the Coherent Covering Location Problem
Authors: Felipe Azocar Simonet, Luis Acosta Espejo
Abstract:
In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement).Keywords: Coherent covering location problem, efficient frontier, Lagrangian relaxation, data envelopment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809886 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.
Keywords: Dual solutions, heat transfer, shrinking sheet, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017885 Manifold Analysis by Topologically Constrained Isometric Embedding
Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
Abstract:
We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455884 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed
Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam
Abstract:
Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.
Keywords: Computational Fluid Dynamics (CFD) model, Waste Incineration, Municipal Solid Waste (MSW), Fixed Bed, Primary air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718883 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155882 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171881 Non–Geometric Sensitivities Using the Adjoint Method
Authors: Marcelo Hayashi, João Lima, Bruno Chieregatti, Ernani Volpe
Abstract:
The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation.Keywords: Adjoint method, optimisation, non–geometric sensitivities, boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773880 Instability of Electron Plasma Waves in an Electron-Hole Bounded Quantum Dusty Plasma
Authors: Basudev Ghosh, Sailendranath Paul, Sreyasi Banerjee
Abstract:
Using quantum hydrodynamical (QHD) model the linear dispersion relation for the electron plasma waves propagating in a cylindrical waveguide filled with a dense plasma containing streaming electron, hole and stationary charged dust particles has been derived. It is shown that the effect of finite boundary and stream velocity of electrons and holes make some of the possible modes of propagation linearly unstable. The growth rate of this instability is shown to depend significantly on different plasma parameters.
Keywords: Electron Plasma wave, Quantum plasma, Quantum Hydrodynamical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702879 QCM-D Study of E-casein Adsorption on Bimodal PEG Brushes
Authors: N. Ngadi, J. Abrahamson, C. Fee, K. Morison
Abstract:
Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. A better knowledge of the fouling process can be obtained by controlling the formation of the first protein layer at a solid surface. A number of methods have been investigated to inhibit adsorption of proteins. In this study, the adsorption kinetics of
Keywords: E-casein, QCM-D, stainless steel, bimodal brush, PEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379878 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396877 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space
Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh
Abstract:
The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.
Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266876 Parallelization and Optimization of SIFT Feature Extraction on Cluster System
Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu
Abstract:
Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.Keywords: cluster, image matching, parallelization and optimization, SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863875 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.
Keywords: Automobiles, welding, corrosion, lap joints, Micro XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650874 Performance Improvement in Internally Finned Tube by Shape Optimization
Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu
Abstract:
Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450873 Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan
Authors: Darn H. Hsiao, Zhu-Yun Zheng
Abstract:
Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential.
Keywords: Liquefaction, western Taiwan, liquefaction potential map, factors influence high liquefaction potential areas, LPI analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705872 Quasi-ballistic Transport in Submicron Hg0.8Cd0.2Te Diodes: Hydrodynamic Modeling
Authors: M. Daoudi, A. Belghachi, L. Varani
Abstract:
In this paper, we analyze the problem of quasiballistic electron transport in ultra small of mercury -cadmiumtelluride (Hg0.8Cd0.2Te -MCT) n+-n- n+ devices from hydrodynamic point view. From our study, we note that, when the size of the active layer is low than 0.1μm and for low bias application( ( ≥ 9mV), the quasi-ballistic transport has an important effect.
Keywords: Hg0.8Cd0.2Te semiconductor, Hydrodynamicmode, Quasi-ballistic transport, Submicron diode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514871 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.
Keywords: Asphalt, complex modulus, fatigue life, flexural stiffness, four-point bending, master curves, multigrade bitumen, thermal gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774870 Viscoelastic Modeling of Brain MRE Data Using FE Method
Authors: H. Ajabi Naeeni, M. Haghpanahi
Abstract:
Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752