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Abstract—Scale Invariant Feature Transform (SIFT) has been Then the SIFT was parallelized on GPU with the dpe#e20

widely applied, but extracting SIFT feature is cdicgted and
time-consuming. In this paper, to meet the demdnihe real-time
applications, SIFT is parallelized and optimized adaster system,
which is named pSIFT. Redundancy storage and conwation are
used for boundary data to improve the performaracel before
representation of feature descriptor, data redilocas adopted to
keep load balance in pSIFT. Experimental resultsvsthat pSIFT
achieves good speedup and scalability.
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image matching,

I. INTRODUCTION

I MAGE matching is a fundamental aspect of many probiems

computer vision, including object or scene recagnit
solving for 3D structure from multiple images, ster

correspondence, and motion tracking. Image matching
divided into scale- information-based matching an@'"

feature-based matching. Scale-information-basechiregy is
simple and easy to realize, but it is compute-isivanand very
sensitive to changes in image scale, rotation,rdeftion etc.
Feature-based matching can largely overcome

shortcomings, so it is well applied in computeriofis D. G.

Lowe has proposed a method for extracting distecti
invariant features from images named SIFT [1]. The SIFT

features are invariant to image scale and rotatéom also
provide robust matching across a substantial raigaffine
distortion, change in viewpoint, addition of noised change
in illumination. So SIFT method becomes a hot tauid has
been studied in serial optimization [5], parallptimization [6],
[7], and there are many method extensions, suétCasSIFT
[2], GLOH [3] and CSIFT [4]. It is also applied detection [8],
[9], tracking [10], [11] and registration [12], [1L3

A 128-dimensional vector is used to describe thETSI
feature, which is compute-intensive. The metho8I&T can’t
meet the real-time demand of many applicationd ssonline
object recognition and real-time video processing.

parallelization and

FPS [15]. Qi Zhang et al. implemented parallel SBfT the
dual 4-core server and gain the speed of 45 FRS bt the
demand of real-time video stream with the spee&RB8 [16].
For the High Definition Television (HDTV) image s of
1920x1080), the speed of 10 FPS on the 16-coreimachn’t
meet the requirement of HDTV. So Reference [17]pteid a
64-core Chip MultiProcessor (CMP) simulator andieobd 33

FPS, which met the real-time requirement of HDTMtAGP U,

SMP and CMP platform, these studies basically mbet
requirements of real-time applications with smatlge. But
for the application of aerophotogrammetry and rens&nsing,
the image is massive and the speed of parallel 8hThese
platform can’'t meet the real-time demand. Seth Wetrral.
carried on the parallel experiment of large image achieved
the speedup about 2x on dual 4-core SMP machiné&§rig et
implemented the parallel SIFT on 32-procesdoister
which has been named DDP-SIFT, but the speedujpis 40x.
The two parallel methods have low speedup for largages.
This paper focus on the parallelization and optation of

thesi T feature extraction on cluster system for langages. The

remainder of this paper is organized as followsctiSe I
describes the extraction of SIFT feature. In sectib, we
propose a parallelized and optimized algorithmI&fTSeature
extraction. Section IV gives the experimental resuind
Section V concludes our work.

Il. SIFT FEATURE EXTRACTION

SIFT method was proposed by D. G. Lowe in 2004 ctvhi
remained invariant to rotation and change in imsggde, and
also showed to provide robust matching across atantial
range of affine distortion, change in viewpointdiidn of
noise, and change in illumination [1]. Three majtages are
used to extract SIFT feature in this paper. Theyganeration
of Gaussian pyramid, scale space extrema detectimh
descriptor representation.

Therefore, parallelization of SIFT has come to the A Generationof Gaussian Pyramid

researchers’ attention. Parallel SIFT has beeneémehted on
GPU, and extracted about 800 points from a 640x8D&o at
10 frames per second (FPS)for the limitation ofdinare and
OpenGL [14].
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Two-dimensional image I(x, y) at different scalasp, can
be expressed as follows:
L(x,Y,0) =G(x ¥, 9) *I (x,Y) )
Where * is the convolution operation of the x and y
two-dimensional Gaussian function G (x, 8y, is defined as
follows:

G(x,,9) =%e—(x2+y2)/252 @
2w

The Gaussian pyramid (GSS pyramid) is computedhby t
convolution of a variable-scale Gaussian functioith vihe
input image. There are o octaves and each octave images
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in the GSS pyramid. For the first octave of scalace, the
image (the input image is up-sampled by a factorR)is
repeatedly convolved with Gaussian to produce ¢hefsscale
space images. After that, the Gaussian image isé@ampled
by a factor of 2, and the process is repeatedtf@rmctaves.

B. Scale Space Extrema Dectection

In 1999, Lowe proposed to detect extrema
Difference-of-Gaussian (DOG) scale space [19]. Aeljd
images in GSS pyramid are subtracted to produceDh&
images:

D(x,y,0) = (G(x,y,kd) - G(x,y,9)) 3)
=L(xy,kd)~L(x,y,9)

In order to detect the local maxima and minima ¢f,125),
comparison between each sample point with its eiglghbors
in the current image and nine neighbors in theesabbve and
below is performed. Twenty six comparison operai@me
needed for a sample point during this step. The stex is to
perform a detailed fit to the nearby data for laatscale, and
ratio of principal curvatures. This informationused to reject
points that have low contrast (and are thereforesitee to
noise) or are poorly localized along an edge.

C.Descriptor Representation

Firstly, it is needed to determine the keypointEdtion,
scale and orientation. In the section B, the lacetind scale is
ready. For each image sample, L(x,y), the gradiggnitude,
m(x,y), and orientationp(x,y), are computed using pixel
difference:

miy | L YL - 1y)P+ Ly +)-Lixy-DF (4)

O.y)=tar H(Lx y+D-L(x y- )L &+ 1y)-Lx-1))(5)
In actual process, the gradient magnitude and twatien are
computed in a region around the keypoint locateny these
samples are accumulated into orientation histogiém. peak
of the histogram is the main orientation and otladrsve 80%
of the peak are the auxiliary orientation. Then ¢herdinates
of the descriptor and the gradient orientationsratated to the
main orientation to keep the invariability to rotst A
Gaussian window with the center at the keypoiselected and
these samples in the window are accumulated inenttion
histograms over 4x4 subregions with 8 orientatiomsbThe
descriptor is formed a vector containing the vahbfeall
orientation histogram entries, corresponding to gnadient
magnitudes. So the descriptor vector contains 4x428
elements.

I1l.  PARALLELIZATION AND OPTIMIZATION OF SIFT

The serial processing time of three steps is shawable 1
and the platform is a dual 6-core server. The kende is
provided by Andrea Vedaldi [20]. The time of ext@em
detection is little and it occupies less the 5%tloé total
execution time. The time spent on the generationG8S
pyramid increases rapidly with the increasing izémage,
and when the image size is 2048x2048, time spentG88
pyramid is much more than that on the descripforagentation.
In the generation of GSS pyramid, the base image lfbttom
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image in each octave) of current octave is fromdseoctave,
so it is difficult to parallelize totally among @stes. How to
parallelize and optimize the generation of GSS ipydas one
of the difficulties in parallelism and optimizatiofi SIFT. Time
of descriptor computation is affected by the numiodér

keypoints and the computation of descriptors can be

parallelized totally.

at TABLE |
SERIAL EXECUTION TIME OF SIFT FEATURE EXTRACTION (UNIT: SECOND)

. number of GSS Keypoint  Descriptor

Image Size keypoints  PYRAMID detye%tion presenF:ation

800x640 4513 0.8949s 0.076s 1.066s

1024x1024 14346 1.9899s 0.115s 3.122s

2048x1024 33409 5.1603s 0.278s 7.051s

2048x2048 43341 13.229s 0.452s 9.817s

Reference [18] proposed a parallel SIFT featureaetibn
algorithm, named DDP-SIFT. In the DDP-SIFT, the ebas
images of each octave are produced in serial, eeted
Pyramid Octave Base (POB) bellow. Then POB is digidnd
allocated to all task nodes to do the followingpsteThe top
layer of POB is divided into one block. Next laysrdivided
into four blocks and the rest may be deduced bjoggaFor
example, when there are 4 octaves, the ratio akslaumber
from top to bottom of POB is 1:4:16:64. The gerierabf POB
can't be parallelized, so the time spent on thiscedure is
invariable when the system scale enlarged. Thisquhore
results in bad speedup, and according to Amdahlig the
speedup will get worse with the increasing numbér
computing nodes.

We propose a parallel algorithm with input imagamed
pSIFT. The flow of pSIFT is shown in Fig. 1. Aftdre input
image is partitioned and assigned to all nodesGth8 pyramid
is generated and local extrema is detected usitey iata on
each node. All nodes send the number of keypomtthée
master node(master node is the node whose ideigiflen this
paper). The master node calculates the mean vedweding to
the number of keypoints and nodes and broadcasikriodes.
All nodes send the keypoints with a small regioouad that
exceeds the mean value to the master node andattemmode
reallocates these data to the nodes whose numierypbints
is less than the mean value. All nodes computaléseriptor
vector using local data in parallel.

generation of GSS pyramid descriptor presentation

and detection of extrgma [T
= node0 »  node0
[ noder | [ roder | £
> nodel M nodel g
2
£ : i =
- _§ = noden-2 '% = noden-2 g
£ L S — E
K} »  noden-1 B »  noden-1
\ L g S
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Fig. 1 Flow of pSIFT

A. Data Partition

During the generation of GSS pyramid, the base énafg
current octave is from last octave, so the proceddroctave
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generation can't be completely parallelized. Acaogcdto the
number of nodes, input image is allocated to atlasoevenly
and all nodes compute GSS pyramid on the local @vdaga.
The partition of input image is diverse, but onlyotare in
common use, as shown in Fig. 2.

If the boundary data is redundant, two partitionthmds
shown in Fig.2 have no effect on the parallel atpar. But for
data communication, two methods will have differanpact
on performance. For the partition (a) in Fig. 2e arode will
communicate with two adjacent nodes at most. F@ptrtition
(b) in Fig. 2, one node will communicate with upfdar nodes,
which brings additional communication overhead adds the
complexity of program. So the partition (a) is atpin this
paper.

data partition(a) data partition(b)

Fig. 2 Diagram of data partition

B. Processing of Boundary Data

The main problem brought by data partition is thecpssing
of boundary data. After the partition of input ineaghe middle
part of the input image may be the boundary datarafde and
keypoints may be extracted from this area, just @kta roped
by the coil shown in Fig. 3(a). Different proceduneeds
different boundary data and the following discudsesndary
data needed in SIFT feature extraction.

1. For the procedure of GSS pyramid generatiomundary

pixel needs w rows of data on adjacent node(2w+thés

template size of Gaussian filter).

2. For the procedure of extrema detection, a piélbe

compared with 8 neighbors on the same scale, soconef

pixel on adjacent node is needed.

3. For the representation of descriptor, a keypoggds a

16x16 block (not including the row and column ofjeint),

so a boundary keypoint needs 8 rows of pixels qacadt
node.

and 2w rows are needed to be redundant for the firsivact
So there will be much additional computing for thigthod.
And the volume of redundant data is invariant wtiensystem
scale enlarged. For 1024x1024 image on 32 CPU caesn
the template size of filter, w, is 8 and numbeodfave, o, is 4,
the local data for each node are 1024x32 and thendant data
is 1024x2'x8=1024x64. That is to say, the redundant data are
twice as the local data, which has affected thdopmance
seriously. Above figures only take into account timélateral
data redundancy, bilateral data needs to be redtimiact.
Redundancy and communication are adopted for baynda
data in this paper. For the first octave, 2(w+8ysoare
redundant for each node, shown in Fig. 3(b), sditheoctave
is computed by local data and the redundant daga dot bring
additional computation. In the following octavesck node
obtains the boundary data by communication as show#g.
3(c). Data movement consists of two directionsand down
data transfer. In the communication, end nodes griddind
node n-1 in Fig. 3(c)) send and receive once, ahdranodes
send and receive twice.

[ W8
—— . . E ‘
4 5 o
Q.ﬁ g C
o D 8 T &8
=g : 28
] =l 22
- - g -
L 2
W8 \
input image { ot e
@ (b ©

Fig. 3 Processing of boundary data

C. Data Synchronization

After the detection of extrema, all nodes compute t
descriptors using local data directly, which caduae the
overhead of communication. However, the number of
keypoints on each node is not equal and the loddlence is
variable with difference input image. So there iatad
synchronization before descriptor computation.riities send
the number of keypoints to the master node, andrthster
node calculates and broadcasts the mean value bas#t:
total number of nodes and keypoints. All nodes camaphe
number of keypoints with the mean value. The keyidhat
exceeds the mean value are sent to the master withe
position, scale, gradient orientation and a snegjlan around.
The master node distributes these keypoints tadkes whose

There are two methods for the boundary data. One nigimber of keypoints is less than the mean. Eack nothputes

redundant storage and another is communicationthin
generation of GSS pyramid, the base image of cuaeave is
from last octave, so if fully redundant storagased, there will

be large volume of data to be redundant and additio

computation will also be brought. The following g8/ an
example with o octaves and s images for each octave

To get the base image of current octave, the Gaugsiage
of last octave that has twice the initial valuedofs is the
deviation of Gaussian function) is resampled bynglevery
second pixel in each row and column [1]. If w ravf®&oundary
pixels need to be redundant for th® actave, 2w rows are

the descriptor in parallel.

IV. EXPERIMENTAL RESULTS ANDANALYSIS

We evaluate the performance of pSIFT on the cluster
developed by National University of Defense Tecbgyl
(NUDT). The configuration of cluster system is addws:

1. Computing node is configured with 48GB memory and
dual 6-core Intel Xeon CPU X5670 which has 2.93GHz
clock and 12MB L3 cache.

2. Luster file system is used.

3. Bandwidth of network is 160Gbps in dual.

needed for 01 octave. The rest may be deduced by analogy,
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Fig. 4 shows the speedup of pSIFT and DDP-SIFT,vead
can see that the performance of pSIFT is better BHaP-SIFT,
for pSIFT avoids the serial process. With the iasieg number
of CPU cores, the performance of DDP-SIFT becomesev
and the speedup almost reaches the peak with 24.deor the
image with size of 1024x1024, the speedup of pS#-dbout
20x and it is only about 10x for DDP-SIFT with 3@res.

Fig. 4 also gives the experimental result of imagh size of
2048x2048 and the super-linear speedup is achi®adarge
images, the GSS pyramid is too large to cache andecmiss
leads to the overhead of memory access. For thedatave
with 5 images, there are 80MB data and it's hatdlput into
cache totally. So when the scale of system enlarges
probability of cache miss will be reduced and tbefgrmance
will be improved which has nothing to do with theputation
or communication.

In Fig. 4, pSIFT:1024 and pSIFT:2048 are the pSIFT

experimental results with image size of 1024x102#d a
2048x2048. DDP-SIFT:1024 is the DDP-SIFT experirakbnt
result with image size of 1024x1024. The sameuis tf Fig.5.

35

=—4—pSIFT:1024

|| —m=psiFT:2048

DDP-SIFT:1024

b

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

number of CPU cores

Fig. 4 Speedup of pSIFT and DDP-SIFT

Synchronization is executed before keypoints dptari
computation to keep load balance. Synchronizatieepk the
load balance, and at the same time it brings conation
overhead. With the enlarging of system,
computation with communication will reduce and tiverhead
of communication will affect the performance mopparently.
We carry on the experiment for the synchronizatidhe
synchronization is canceled before computationesfcdptor,
so the descriptor is directly computed after theypként
detection and this process
synchronization SIFT). Fig. 5 shows the experimertsult of
pSIFT and nsSIFT on 32-core cluster, and pSIFTipgsOr in
performance to nsSIFT.
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Fig. 5 Performance comparison between pSIFT antFiisS

V.CONCLUSIONAND FUTURE WORK

We proposed pSIFT which implemented the parallETSIn
the cluster. The pSIFT method gains good scalgbditd
speedup compared to DDP-SIFT. This is mainly far data
partition of pSIFT that avoids the serial executiibne. In this
paper, boundary data is dealt with carefully, whastoids the
loss of feature and improves the performance.

Images with the size of 2048x208 are used for the
experiment. The experimental results show thatvtiieme of
GSS pyramid data has great effect on performancéafge
images. So how to improve the performance of Sik-Tatge
images will be a challenge and it is one of ouunffetworks.
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