
 

 

  
 

Abstract—Scale Invariant Feature Transform (SIFT) has been 
widely applied, but extracting SIFT feature is complicated and 
time-consuming. In this paper, to meet the demand of the real-time 
applications, SIFT is parallelized and optimized on cluster system, 
which is named pSIFT. Redundancy storage and communication are 
used for boundary data to improve the performance, and before 
representation of feature descriptor, data reallocation is adopted to 
keep load balance in pSIFT. Experimental results show that pSIFT 
achieves good speedup and scalability. 
 

Keywords—cluster, image matching, parallelization and 
optimization, SIFT.  

I. INTRODUCTION 

MAGE matching is a fundamental aspect of many problems in 
computer vision, including object or scene recognition, 

solving for 3D structure from multiple images, stereo 
correspondence, and motion tracking. Image matching is 
divided into scale- information-based matching and 
feature-based matching. Scale-information-based matching is 
simple and easy to realize, but it is compute-intensive and very 
sensitive to changes in image scale, rotation, deformation etc. 
Feature-based matching can largely overcome these 
shortcomings, so it is well applied in computer vision. D. G.  
Lowe has proposed a method for extracting distinctive 

invariant features from images， named SIFT [1]. The SIFT 

features are invariant to image scale and rotation, and also 
provide robust matching across a substantial range of affine 
distortion, change in viewpoint, addition of noise, and change 
in illumination. So SIFT method becomes a hot topic and has 
been studied in serial optimization [5], parallel optimization [6], 
[7], and there are many method extensions, such as PCA-SIFT 
[2], GLOH [3] and CSIFT [4]. It is also applied in detection [8], 
[9], tracking [10], [11] and registration [12], [13]. 

A 128-dimensional vector is used to describe the SIFT 
feature, which is compute-intensive. The method of SIFT can’t 
meet the real-time demand of many applications, such as online 
object recognition and real-time video processing.  

Therefore, parallelization of SIFT has come to the 
researchers’ attention. Parallel SIFT has been implemented on 
GPU, and extracted  about 800 points from a 640x800 video at 
10 frames per second (FPS)for the limitation of hardware and 
OpenGL [14].  
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Then the SIFT was parallelized on GPU with the speed of 20 

FPS [15]. Qi Zhang et al. implemented parallel SIFT on the 
dual 4-core server and gain the speed of 45 FPS, that met the 
demand of real-time video stream with the speed 30 FPS [16]. 
For the High Definition Television (HDTV) image (size of 
1920x1080), the speed of 10 FPS on the 16-core machine can’t 
meet the requirement of HDTV. So Reference [17] adopted a 
64-core Chip MultiProcessor (CMP) simulator and achieved 33 

FPS, which met the real-time requirement of HDTV. With GPU、
SMP and CMP platform, these studies basically meet the 
requirements of real-time applications with small image. But 
for the application of aerophotogrammetry and remote sensing, 
the image is massive and the speed of parallel SIFT on these 
platform can’t meet the real-time demand. Seth Warn et al. 
carried on the parallel experiment of large image and achieved 
the speedup about 2x on dual 4-core SMP machine [7]. Feng et 
al. implemented the parallel SIFT on 32-processor cluster 
which has been named DDP-SIFT, but the speedup is about 10x. 
The two parallel methods have low speedup for large images. 

This paper focus on the parallelization and optimization of 
SIFT feature extraction on cluster system for large images. The 
remainder of this paper is organized as follows. Section II 
describes the extraction of SIFT feature. In section III, we 
propose a parallelized and optimized algorithm of SIFT feature 
extraction. Section IV gives the experimental results and 
Section V concludes our work. 

II. SIFT FEATURE EXTRACTION 

SIFT method was proposed by D. G. Lowe in 2004, which 
remained invariant to rotation and change in image scale, and 
also showed to provide robust matching across a substantial 
range of affine distortion, change in viewpoint, addition of 
noise, and change in illumination [1]. Three major stages are 
used to extract SIFT feature in this paper. They are generation 
of Gaussian pyramid, scale space extrema detection and 
descriptor representation. 

A. Generation of Gaussian Pyramid 

Two-dimensional image I(x, y) at different scale space, can 
be expressed as follows: 

),(*),,(),,( yxIyxGyxL δδ =     (1) 
Where * is the convolution operation of the x and y, 

two-dimensional Gaussian function G (x, y, δ) is defined as 
follows: 

222 2/)(
22

1
),,( δ

πδ
δ yxeyxG +−=       (2) 

The Gaussian pyramid (GSS pyramid) is computed by the 
convolution of a variable-scale Gaussian function with the 
input image. There are o octaves and each octave has s images 
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in the GSS pyramid. For the first octave of scale space, the 
image (the input image is up-sampled by a factor of 2) is 
repeatedly convolved with Gaussian to produce the set of scale 
space images. After that, the Gaussian image is down-sampled 
by a factor of 2, and the process is repeated for other octaves. 

B. Scale Space Extrema Dectection 

In 1999, Lowe proposed to detect extrema at 
Difference-of-Gaussian (DOG) scale space [19]. Adjacent 
images in GSS pyramid are subtracted to produce the DOG 
images: 

),,(),,(

)),,(),,((),,(

δδ
δδδ

yxLkyxL

yxGkyxGyxD

−=
−=

   (3) 

In order to detect the local maxima and minima of D(x,y,δ), 
comparison between each sample point with its eight neighbors 
in the current image and nine neighbors in the scale above and 
below is performed. Twenty six comparison operations are 
needed for a sample point during this step. The next step is to 
perform a detailed fit to the nearby data for location, scale, and 
ratio of principal curvatures. This information is used to reject 
points that have low contrast (and are therefore sensitive to 
noise) or are poorly localized along an edge. 

C. Descriptor Representation 

Firstly, it is needed to determine the keypoint’s location, 
scale and orientation. In the section B, the location and scale is 
ready. For each image sample, L(x,y), the gradient magnitude, 
m(x,y), and orientation, θ(x,y), are computed using pixel 
difference: 

22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm (4) 

))),1(),1(/())1,()1,(((1tan),( yxLyxLyxLyxLyx −−+−−+−=θ (5) 
In actual process, the gradient magnitude and orientation are 

computed in a region around the keypoint location, and these 
samples are accumulated into orientation histogram. The peak 
of the histogram is the main orientation and others above 80% 
of the peak are the auxiliary orientation. Then the coordinates 
of the descriptor and the gradient orientations are rotated to the 
main orientation to keep the invariability to rotation. A 
Gaussian window with the center at the keypoint is selected and 
these samples in the window are accumulated into orientation 
histograms over 4x4 subregions with 8 orientation bins. The 
descriptor is formed a vector containing the value of all 
orientation histogram entries, corresponding to the gradient 
magnitudes. So the descriptor vector contains 4x4x8=128 
elements. 

 
III.  PARALLELIZATION AND OPTIMIZATION OF SIFT 

The serial processing time of three steps is shown in table 1 
and the platform is a dual 6-core server. The serial code is 
provided by Andrea Vedaldi [20]. The time of extrema 
detection is little and it occupies less the 5% of the total 
execution time. The time spent on the generation of GSS 
pyramid increases rapidly with the increasing size of image, 
and when the image size is 2048x2048, time spent on GSS 
pyramid is much more than that on the descriptor representation. 
In the generation of GSS pyramid, the base image (the bottom 

image in each octave) of current octave is from the last octave, 
so it is difficult to parallelize totally among octaves. How to 
parallelize and optimize the generation of GSS pyramid is one 
of the difficulties in parallelism and optimization of SIFT. Time 
of descriptor computation is affected by the number of 
keypoints and the computation of descriptors can be 
parallelized totally. 

TABLE I 
SERIAL EXECUTION TIME OF SIFT FEATURE EXTRACTION (UNIT: SECOND) 

Image Size 
number of 
keypoints 

GSS 

PYRAMID 
Keypoint 
detection 

Descriptor 
presentation 

800x640 4513 0.8949s 0.076s 1.066s 
1024x1024 14346 1.9899s 0.115s 3.122s 
2048x1024 33409 5.1603s 0.278s 7.051s 
2048x2048 43341 13.229s 0.452s 9.817s 

 
Reference [18] proposed a parallel SIFT feature extraction 

algorithm, named DDP-SIFT. In the DDP-SIFT, the base 
images of each octave are produced in serial, referenced 
Pyramid Octave Base (POB) bellow. Then POB is divided and 
allocated to all task nodes to do the following steps. The top 
layer of POB is divided into one block. Next layer is divided 
into four blocks and the rest may be deduced by analogy. For 
example, when there are 4 octaves, the ratio of blocks number 
from top to bottom of POB is 1:4:16:64. The generation of POB 
can’t be parallelized, so the time spent on this procedure is 
invariable when the system scale enlarged. This procedure 
results in bad speedup, and according to Amdahl’s law, the 
speedup will get worse with the increasing number of 
computing nodes. 

We propose a parallel algorithm with input image, named 
pSIFT. The flow of pSIFT is shown in Fig. 1. After the input 
image is partitioned and assigned to all nodes, the GSS pyramid 
is generated and local extrema is detected using local data on 
each node. All nodes send the number of keypoints to the 
master node(master node is the node whose identifier is 0 in this 
paper). The master node calculates the mean value according to 
the number of keypoints and nodes and broadcasts to all nodes. 
All nodes send the keypoints with a small region around that 
exceeds the mean value to the master node and the master node 
reallocates these data to the nodes whose number of keypoints 
is less than the mean value. All nodes compute the descriptor 
vector using local data in parallel. 

 
Fig. 1 Flow of pSIFT 

A. Data Partition 

During the generation of GSS pyramid, the base image of 
current octave is from last octave, so the procedure of octave 
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generation can’t be completely parallelized. According to the 
number of nodes, input image is allocated to all nodes evenly 
and all nodes compute GSS pyramid on the local image data. 
The partition of input image is diverse, but only two are in 
common use, as shown in Fig. 2. 

If the boundary data is redundant, two partition methods 
shown in Fig.2 have no effect on the parallel algorithm. But for 
data communication, two methods will have different impact 
on performance. For the partition (a) in Fig. 2, one node will 
communicate with two adjacent nodes at most. For the partition  
(b) in Fig. 2, one node will communicate with up to four nodes, 
which brings additional communication overhead and adds the 
complexity of program. So the partition (a) is adopted in this 
paper. 

 
Fig. 2 Diagram of data partition 

B. Processing of Boundary Data  

The main problem brought by data partition is the processing 
of boundary data. After the partition of input image, the middle 
part of the input image may be the boundary data of a node and 
keypoints may be extracted from this area, just like data roped 
by the coil shown in Fig. 3(a). Different procedure needs 
different boundary data and the following discusses boundary 
data needed in SIFT feature extraction. 

1. For the procedure of GSS pyramid generation, a boundary 
pixel needs w rows of data on adjacent node(2w+1 is the 
template size of Gaussian filter). 
2. For the procedure of extrema detection, a pixel will be 
compared with 8 neighbors on the same scale, so one row of 
pixel on adjacent node is needed. 
3. For the representation of descriptor, a keypoint needs a 
16x16 block (not including the row and column of keypoint), 
so a boundary keypoint needs 8 rows of pixels on adjacent 
node. 
There are two methods for the boundary data. One is 

redundant storage and another is communication. In the 
generation of GSS pyramid, the base image of current octave is 
from last octave, so if fully redundant storage is used, there will 
be large volume of data to be redundant and additional 
computation will also be brought. The following gives an 
example with o octaves and s images for each octave.  

To get the base image of current octave, the Gaussian image 
of last octave that has twice the initial value of δ (δ is the 
deviation of Gaussian function) is resampled by taking every 
second pixel in each row and column [1]. If w rows of boundary 
pixels need to be redundant for the oth octave, 2w rows are 
needed for o-1th octave. The rest may be deduced by analogy, 

and 2o-1w rows are needed to be redundant for the first octave. 
So there will be much additional computing for this method. 
And the volume of redundant data is invariant when the system 
scale enlarged. For 1024x1024 image on 32 CPU cores, when 
the template size of filter, w, is 8 and number of octave, o, is 4, 
the local data for each node are 1024x32 and the redundant data 
is 1024x24-1x8=1024x64. That is to say, the redundant data are 
twice as the local data, which has affected the performance 
seriously. Above figures only take into account the unilateral 
data redundancy, bilateral data needs to be redundant in fact. 

Redundancy and communication are adopted for boundary 
data in this paper. For the first octave, 2(w+8) rows are 
redundant for each node, shown in Fig. 3(b), so the first octave 
is computed by local data and the redundant data does not bring 
additional computation. In the following octaves, each node 
obtains the boundary data by communication as shown in Fig. 
3(c). Data movement consists of two directions: up and down 
data transfer. In the communication, end nodes (node 0 and 
node n-1 in Fig. 3(c)) send and receive once, and other nodes 
send and receive twice. 

{

{

 
Fig. 3 Processing of boundary data 

C.  Data Synchronization 

After the detection of extrema, all nodes compute the 
descriptors using local data directly, which can reduce the 
overhead of communication. However, the number of 
keypoints on each node is not equal and the load imbalance is 
variable with difference input image. So there is data 
synchronization before descriptor computation. All nodes send 
the number of keypoints to the master node, and the master 
node calculates and broadcasts the mean value based on the 
total number of nodes and keypoints. All nodes compare the 
number of keypoints with the mean value. The keypionts that 
exceeds the mean value are sent to the master node with 
position, scale, gradient orientation and a small region around. 
The master node distributes these keypoints to the nodes whose 
number of keypoints is less than the mean. Each node computes 
the descriptor in parallel. 

IV.  EXPERIMENTAL RESULTS AND ANALYSIS 

We evaluate the performance of pSIFT on the cluster 
developed by National University of Defense Technology 
(NUDT). The configuration of cluster system is as follows: 

1. Computing node is configured with 48GB memory and 
dual 6-core Intel Xeon CPU X5670 which has 2.93GHz 
clock and 12MB L3 cache. 

2. Luster file system is used. 
3. Bandwidth of network is 160Gbps in dual. 
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Fig. 4 shows the speedup of pSIFT and DDP-SIFT, and we 
can see that the performance of pSIFT is better than DDP-SIFT, 
for pSIFT avoids the serial process. With the increasing number 
of CPU cores, the performance of DDP-SIFT becomes worse 
and the speedup almost reaches the peak with 24 cores. For the 
image with size of 1024x1024, the speedup of pSIFT is about 
20x and it is only about 10x for DDP-SIFT with 32 cores. 

Fig. 4 also gives the experimental result of image with size of 
2048x2048 and the super-linear speedup is achieved. For large 
images, the GSS pyramid is too large to cache and cache miss 
leads to the overhead of memory access. For the first octave 
with 5 images, there are 80MB data and it’s hardly to put into 
cache totally. So when the scale of system enlarges, the 
probability of cache miss will be reduced and the performance 
will be improved which has nothing to do with the computation 
or communication. 

In Fig. 4, pSIFT:1024 and pSIFT:2048 are the pSIFT 
experimental results with image size of 1024x1024 and 
2048x2048. DDP-SIFT:1024 is the DDP-SIFT experimental 
result with image size of 1024x1024. The same is true of Fig.5. 

 

 
Fig. 4 Speedup of pSIFT and DDP-SIFT 

 
Synchronization is executed before keypoints descriptor 

computation to keep load balance. Synchronization keeps the 
load balance, and at the same time it brings communication 
overhead. With the enlarging of system, the ratio of 
computation with communication will reduce and the overhead 
of communication will affect the performance more apparently. 
We carry on the experiment for the synchronization. The 
synchronization is canceled before computation of descriptor, 
so the descriptor is directly computed after the keypoint 
detection and this process is named nsSIFT (non- 
synchronization SIFT). Fig. 5 shows the experimental result of 
pSIFT and nsSIFT on 32-core cluster, and pSIFT is superior in 
performance to nsSIFT. 

 
Fig. 5 Performance comparison between pSIFT and nsSIFT 

V. CONCLUSION AND FUTURE WORK 

We proposed pSIFT which implemented the parallel SIFT on 
the cluster. The pSIFT method gains good scalability and 
speedup compared to DDP-SIFT. This is mainly for the data 
partition of pSIFT that avoids the serial execution time. In this 
paper, boundary data is dealt with carefully, which avoids the 
loss of feature and improves the performance. 

Images with the size of 2048x208 are used for the 
experiment. The experimental results show that the volume of 
GSS pyramid data has great effect on performance for large 
images. So how to improve the performance of SIFT to large 
images will be a challenge and it is one of our future works. 
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