
 

 

  
Abstract—In this paper the damage in clamped-free, clamped-

clamped and free-free beam are analyzed considering samples 

without and with structural modifications. The damage location is 

investigated by the use of the bispectrum and wavelet analysis. The 

mathematical models are obtained using 2D elasticity theory and the 

Finite Element Method (FEM). The numerical and experimental data 

are approximated using the Particle Swarm Optimizer (PSO) method 

and this way is possible to adjust the localization and the severity of 

the damage. The experimental data are obtained through 

accelerometers placed along the sample. The system is excited using 

impact hammer. 

 

Keywords—Damage, beam, PSO, bispectrum, wavelet transform.  

I. INTRODUCTION 

N area of great interest in the field of engineering is the 

study and identification of structural damage [1]-[7]. 

Most identification techniques are based on modal 

parameters measured using only a few modes of vibration 

and/or modal frequencies of the structure that can easily be 

obtained by dynamic testing. The results are obtained with 

dynamic measurements at different times, corresponding to 

two moments of the life of the structure (usually with the 

model in good condition and damaged). 

The methods based on dynamic tests do not require an 

analytical model of the structure, only some modal frequencies 

and mode shapes, before and after damage. The main methods 

based on vibration signals are: Mode shape curvature method 

[1], [3], [8]; Change in flexibility method [1], [3], [8]; Change 

in flexibility curvature method [1], [3], [8]; Strain energy 

method [1], [3]; statistical methods [1], [6], [9]-[14], and 

wavelet analysis [15]-[17]. Defects in components of 

machinery and structures can be detected by monitoring 

vibration. The bispectrum, a third-order statistic and kurtosis, 

a fourth-order moment, helps to identify faults in mechanical 

components. The bispectrum technique relates one set of 

mixing waves through the spectral coupling. The kurtosis 

gives an indication of the proportion of samples that deviate 

from the mean by a small value compared to those, which 

deviate by a large value [6], [11]-[14]. 
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Another analysis procedure is the use of mathematical 

models tested. The correlation techniques are mixture of visual 

and numerical means to identify the differences between 

measurements and predictions. Whereas numerical correlation 

techniques return a numerical value, visual means of 

correlation are subjective and of qualitative nature [18]. Some 

of the basic correlation tools include simple tabulation or 

plotting the measured and predicted eingenvalues. A more 

strict correlation is the use of so-called “Modal Assurance 

Criteria” (MAC) [18]-[20]. 

The aim of this work is analyze structural changes through 

the inclusion of damage (crack) with known formats and 

positions in the samples. In this paper the damage in clamped-

free, clamped-clamped and free-free beam are analyzed 

considering samples without and with structural modifications. 

The damage location is investigated varying the damage 

position in the mathematical model and comparing the 

numerical and experimental data. The mathematical models 

are obtained using the Finite Element Method (FEM). The 

experimental data are obtained using the impact hammer and 

laser velocity transducer. The statistics procedures are used to 

qualitative analysis. 

To approximate the experimental and numeric FRF data, 

the Particle Swarm Optimizer (PSO) method is used. The first 

approximations of the position of the damage are obtained 

using two different parameters based in the energy of the 

signal and using bispectrum and wavelet analysis. Using this 

procedure and making a sweep of the modified finite element 

position along the sample, it is possible to identify with great 

precision the location and severity of the damage through the 

comparison of the experimental and numeric modal 

parameters. 

II. STATISTICAL AND MODAL ANALYSIS 

A. Bispectrum Theory 

A quadratic non-linearity will relate three wave components 

in such a way that 

 

ε+∑=
+=

lk
lkm

lkm XXAX ,            (1) 

 

where kX  and lX  denote the complex Fourier spectral 

components at kω  and lω , with phase kθ  and lθ , 

respectively. lkA ,  denotes the coupling coefficient and is 

dependent on the properties of the non-linearity system. The 
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term ε  denotes any errors associated with this model. In this 
system kX  and lX  will interact to create a third component 

mX , where lkm ωωω ±=  and lkm θθθ ±= . 

The bispectrum is defined as: 

 

 *),( mlk XXXlkb =         (2) 

 

where *
mX  denotes the complex conjugate of mX . It can be 

clearly seen how this takes into account the mixing between 

two frequencies. If kω , lω  and lk+ω  are independent, each 

will have an independent random phase (relative to each 

other). 

The probability distribution of a random variable X is 

defined as: 

  

 )()( xXPxF <=          (3) 

 

The probability density function (p.d.f.) is the derivative of: 

 

 
dx

xdF
xf

)(
)( =            (4) 

 

The expectation operation, which gives the expected value 

of a function )x(g , is defined as: 

 

 { } ∫=
∞

∞−
dxxfxgxgE )()()(        (5) 

 

In most cases, the p.d.f. can be decomposed into its 

constituent moments or cumulants. If a change in condition 

causes a change in the p.d.f of the signal then the moments 

and cumulants may also change. The moments of the signal 

are defined as: 

 

 { }nn xEm =           (6) 

 

where {}.E  can be estimated. 

The most common simple statistical feature used in signal 

monitoring is the mean square value (second-order moment) 

of the signal 

 

 ∑=
=

N

i

ix
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m
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2
2 )(

1
         (7) 

 

A second common statistical feature used is the kurtosis 

which gives an indication of the proportion of samples which 

deviate from the mean by a small value compared to those 

which deviate by a large number. The fourth-order moment 

can be normalized by the second-order moment squared: 

 
2
2

4
4

m

m
=γ          (8) 

 

The zero mean Gaussian distributed variable has a kurtosis 

of 3. 

These statistical tools are useful for detecting an incipient 

failure, while the bispectrum can be used for uniform state 

system. 

B. Wavelet Theory 

The continuous wavelet transform (CWT) is defined as 

follows: 
 

 dtttfbaC ba )()(),( ,∫=
+∞

∞−
ψ         (9) 

 

where 

 

)()( 2/1
,

a

bt
atba

−
= ψψ         (10) 

 

is a window function called the mother wavelet a is a scale 

and b is a translation. The term wavelet means a small wave. 

The smallness refers to the condition that this (window) 

function is of finite length (compactly supported). The wave 

refers to the condition that this function is oscillatory. The 

term mother implies that the functions with different region of 

support that are used in the transformation process are derived 

from one main function, or the mother wavelet. In other 

words, the mother wavelet is a prototype for generating the 

other window functions. 

Wavelet packets consist of a set of linearly combined usual 

wavelet functions. The wavelet packets inherit the properties 

such as orthonormality and time-frequency localization from 

their corresponding wavelet functions. A wavelet packet 

)(
,

ti
kj

ψ is a function with three indices where integers i, j and 

k are the modulation, scale and translation parameters, 

respectively, 

 

1,2,3,...i     ),2(2)( 2/
,

=−= ktt jjji
kj

ψψ      (11) 

 

The wavelet packet component signal )(tf ij can be 

represented by a linear combination of wavelet packet 

functions )(
,

ti
kj

ψ  as follows: 

 

)()()(
,,

ttctf
i
kj

k

i
kj

i
j ψ∑=

∞

−∞=
       (12) 

 

where the wavelet packet coefficients )(
,

tci
kj

can be obtained 

from 
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kj
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+∞

∞−
ψ      (13) 

 

and 

 

)()(
2

1

tftf
j

i

i
j∑=

=
       (14) 

 

The wavelet packet energy index is used to identify the 

initial locations of damage. In this case, the signal energy 

jf
E at j  level is first defined as: 

 

∫ ∑ ∑ ∫==
∞+

∞− = =

∞+

∞−
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m

j
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m
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2
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2

1

2 )()()(    (15) 

 

After manipulations is possible to find the wavelet packet 

component i
jf

E as the stored energy in the component signal 

)(tf
i
j  as: 

 

dttfE
i
ji

jf

2
)(∫=

+∞

∞−
       (16) 

 

The wavelet packet energy rate index is used to indicate the 

localization of the structural damage. The rate of signal 

wavelet packet energy )(
jf

E∆ at j level is defined as 

 

∑

−

=
=

j

i ai
jf

ai
jf

bi
jf

jf E

EE

E
2

1 )(

)()(

)(∆        (17) 

 

where ai
jf

E )(  is the component signal energy i
jf

E  at j  

level without damage, and bi
jf

E )(  is the component signal 

energy i
j
f

E  with some damage. 

C. PSO Method 

In this work the physical parameters of a steel clamped-

free; clamped-clamped and free-free beam are estimated using 

measured and numeric frequency response functions (FRFs). 

The mathematical models are obtained using the finite element 

method (FEM). To approximate the experimental and numeric 

FRF data the Particle Swarm Optimizer method (PSO) is used. 

The PSO algorithm is a biologically-inspired algorithm 

motivated by a social analogy. Sometimes it is related to the 

Evolutionary Computation (EC) techniques, basically with 

Genetic Algorithms (GA) and Evolutionary Strategies (ES), 

but there are significant differences with those techniques. The 

PSO algorithm is population-based: a set of potential solutions 

evolves to approach a convenient solution (or set of solutions) 

for a problem. Being an optimization method, the aim is 

finding the global optimum of a real-valued function (fitness 

function) defined in a given space (search space). 

In the PSO algorithm each individual is called a "particle", 

and is subject to a movement in a multidimensional space that 

represents the belief space. Particles have memory, thus 

retaining part of their previous state. There is no restriction for 

particles to share the same point in belief space, but in any 

case their individuality is preserved. Each particle's movement 

is the composition of an initial random velocity and two 

randomly weighted influences: individuality, the tendency to 

return to the particle's best previous position, and sociality, the 

tendency to move towards the neighborhood's best previous 

position. 

The "continuous" version uses a real-valued 

multidimensional space as belief space, and evolves the 

position of each particle in that space using the following 

equations: 

 

))(())(()()1( 21 kxGkxpkvkv iiiiiii −+−+=+ γγ   (18) 

 

)1()()1( ++=+ kvkxkx iii            (19) 

 

where: i  is the particle index; k is the discrete time index; v  

is the velocity on i
th
 particle; x  is the position of the i

th
 

particle; p  is the best position found by i
th
 particle (personal 

best); G  is the best position found by swarm (global best, best 

of personal bests); 2,1γ  are random numbers on the interval 

[0,1] applied to i
th
 particle.. 

D. Modal Parameters 

In the identification of damage (structural changes) are also 

used methods considering the modal changes. A method of 

setting modal (Modal Assurance Criterion - MAC) is used to 

compare pairs of modes. The matrix coefficients are obtained 

by [21]: 

 

{ } { }( )
{ } { } { } { }**

2*

,

jX
T
jXiA

T
iA

jA
T
iA

jiMAC
φφφφ

φφ
=       (20) 

 

where { }Aφ  and { }Xφ  denotes the numeric and experimental 

modes; the superscript symbol T denotes the transpose of a 

vector and the subscript superscript symbol * denotes the 

complex conjugate vector. 

A MAC value close to 1 suggests that the two modes are 

well correlated. An overall mode shape indicator may be 

calculated from: 
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100)(
1

1
1

2 ×











∑−=
=

L

i
iMAC

L
φε       (21) 

III. RESULTS 

The geometric dimensions of the experimental clamped-

free, clamped-clamped and free-free beam steel sample are: 

length = 0.84m; thickness = 0.0127m and width = 0.0254m. 

The effective length for the conditions clamped-free and 

clamped-clamped is 0.825m. 

The experimental data are obtained using the impact 

hammer and one accelerometer displaced along the sample in 

the positions 0.125m; 0.225m; 0.325m; 0.425m; 0.525m; 

0.625m; 0.725m and 0.825m for the clamped-free beam; 

0.125m; 0.225m; 0.325m; 0.425m; 0.525m; 0.625m and 

0.725m for the clamped-clamped beam, and 0.105m; 0.21m; 

0.315m; 0.42m; 0.525m; 0.63m and 0.735m for the free-free 

beam. 

The first step was to obtain data in the frequency domain 

and time domain. The data in the frequency domain are used 

to obtain the modal parameters and data in the time domain 

are used for application of statistical methods. The inverse of 

FRF was used with the intention that the signals had the same 

amplitude of excitation force. 

The structural modifications were introduced in positions 

near 0.0725m (clamped-free and clamped-clamped beam) and 

0.0825m (free-free beam). For these three cases the data were 

collected for the system with and without damage with three 

levels of damage.  

In an attempt to identify the damage, we applied the 

bispectrum technique in the signal in time domain. Figs. 1 and 

2 show the bispectrum of the signal at position 0.425m for the 

system (clamped-free beam) with and without damage. The 

curves present differences but is visually difficult to establish 

a reliable parameter for analysis.  

To overcome this problem, it was defined a relative 

parameter contained the sum of all values of the bispectrum 

defined by (2): 

 

∑=
=

n

i

lkbIndB
1

),(
  

(22) 

 

a

ab

IndB

IndBIndB
Brel

−
=

  

(23) 

 

where IndBb is the bispectrum parameter of the system with 

damage and IndBa is the bispectrum parameter of the system 

without damage. 

Figs. 3 to 5 show the values of the parameter relB  for all 

position of the accelerometer. Fig. 3 shows the curves for the 

system clamped-free; Fig. 4 for the system free-free and Fig. 5 

for the system free-free. It can be noticed that the great values 

for all cases of damage are found for the position 1 of the 

accelerometer. In all situations the great values correspond to 

the real near position of the damages. Similar results are found 

for all 3 systems (Figs. 6-8) when using the energy index 

defined by (17). In these Figs. 3 to 8 the solid line represents 

damage 1; discontinuous line damage 2 and dotted line 

damage 3. 

 

 

Fig. 1 Bispectrum (system without damage) 

 

 

Fig. 2 Bispectrum (system with damage) 

 

 

Fig. 3 Bispectrum (clamped-free beam) 
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Fig. 4 Bispectrum (clamped-clamped beam) 

 

 

Fig. 5 Bispectrum (free-free beam) 

 

 

Fig. 6 Energy index (clamped-free beam) 

 

 

Fig. 7 Energy index (clamped-clamped beam) 

 

 

Fig. 8 Energy index (clamped-clamped beam) 
 

After the verification of the approximated position of the 

damage it was obtained a mathematical model of the beam 

through the finite element method for the three boundary 

conditions. The influence of the severity degree of damage 

was also evaluated. The MAC number (20) e the error 

parameter (21) it was used to validate the numeric and 

experimental data. Tables I to III show the values of these 

parameters for the beam system with three different boundary 

conditions. The maximum error is of the order of 0.5 % 

obtained for the free-free system. 
 

TABLE I 

MAC NUMBER (CLAMPED-FREE BEAM) 

System 1st mode 
shape 

2nd mode 
shape 

3rd mode 
shape 

Error 

No damage 0.9997 0.9987 0.9990 0.0855 

Damage 1 0.9996 0.9987 0.9994 0.0767 

Damage 2 0.9999 0.9993 0.9991 0.0571 
Damage 3 0.9998 0.9985 0.9989 0.0938 

 

TABLE II 
MAC NUMBER (CLAMPED-CLAMPED BEAM) 

System 1st mode 

shape 

2nd mode 

shape 

3rd mode 

shape 

Error 

No damage 0.9999 0.9998 0.9971 0.1065 
Damage 1 0.9999 0.9995 0.9983 0.0761 
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Damage 2 0.9998 0.9996 0.9951 0.1800 

Damage 3 0.9997 0.9990 0.9961 0.1698 

 

TABLE III 
MAC NUMBER (FREE-FREE BEAM) 

System 1st mode 

shape 

2nd mode 

shape 

3rd mode 

shape 

Error 

No damage 0.9991 0.9989 0.9967 0.1751 
Damage 1 0.9989 0.9969 0.9915 0.4237 

Damage 2 0.9995 0.9964 0.9890 0.5034 

Damage 3 0.9987 0.9989 0.9975 0.1634 

 

Finally, we tried to adjust the possible location of the 

damage based on the variations of natural frequencies and a 

performance index defined by (22). To adjust the position of 

the damage, it was made a sweep of the damage position along 

the sample. The position analyzed is according to position of 

the accelerometers showed in Figs. 3 to 8. As the greater 

levels of energy are near to the first accelerometer, it was 

considered the damage position varying between 0 to the 

position in the middle of the first and second accelerometer. 

Figs. 9 to 11 show the variation of the first, second and third 

natural frequencies considering the damage with length of 

1mm and the height varying of 1 to 5mm. 

The numerical and experimental data are approximated 

using the Particle Swarm Optimizer (PSO) method and this 

way is possible to adjust the localization and the severity of 

the damage were considered the first three natural frequencies 

and the following parameter error checking was used: 

 

 

( )
2/1

1

2

1

2





















∑

∑ −

=

=

=
L

i iA

L

i
iXiA

ω

ωω
εω          (24) 

 

where 
iA

ω  and 
iX

ω  represent the experimental and numeric 

frequencies. Three input variables were used in the optimizing 

process: position, length and height of the damage.  

The optimized parameters for the three systems are show in 

Tables IV, V, and VI. The fitted parameters shown in Tables 

IV, V, and VI and the real parameters (reference values) 

present good agreement. The PSO parameters used are: 

particles number: 25; velocity 2; acceleration constant: 2.1; 

inertia weights: 0.9 and 0.6 and number of iterations: 400. The 

convergence demands great computational time because it was 

used a finite element mesh with elements of 16 nodes and 

1mm of size. 

 

 

Fig. 9 First natural frequency (clamped-free beam) 

 

 

Fig. 10 Second natural frequency (clamped-free beam) 

 

 

Fig. 11 Third natural frequency (clamped-free beam) 

 
TABLE IV 

OPTIMIZED DAMAGE PARAMETERS (CLAMPED-FREE BEAM) 

 Position (m) Length (m) Height (m) 

Damage1 0.0745 0.0010 0.00095 

Damage2 0.0751 0.0011 0.00249 
Damage3 0.0750 0.0011 0.00457 
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damage 5mm    
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Reference 
values 

0.0750 0.0010 0.00100 
0.00250 

0.00450 

 
TABLE V 

OPTIMIZED DAMAGE PARAMETERS (CLAMPED-CLAMPED BEAM) 

 Position (m) Length (m) Height (m) 

Damage1 0.0845 0.0011 0.00097 

Damage2 0.0852 0.0010 0.00255 

Damage3 0.0851 0.0011 0.00452 

Reference 
values 

0.0850 0.0010 0.00100 
0.00250 

0.00450 

 
TABLE VI 

OPTIMIZED DAMAGE PARAMETERS (FREE-FREE BEAM) 

 Position (m) Length (m) Height (m) 

Damage1 0.0755 0.0009 0.00095 

Damage2 0.0770 0.0011 0.00248 

Damage3 0.0765 0.0011 0.00449 

Reference 

values 

0.0760 0.0010 0.00100 

0.00250 

0.00450 

IV. CONCLUSION 

It was noted that the application of statistical methods for 

assessing damage to structures can be a potential tool. The 

specific application for cantilever beams presents difficulties 

due to variations in the vibration modes of the system. It was 

observed large variations in values of the bispectrum and the 

energy index and it was not possible to establish a trend of 

increasing or decreasing values with the variation in the level 

of damage and its location. The two parameters presented 

good estimative of the position of the damage. 

The damage position in the sample was obtained 

considering a procedure of minimization of a performance 

index based on the correlation of numerical and experimental 

natural frequencies. To adjust the position of the damage, it 

was made a sweep of the damage position along the sample 

using the PSO method. The numeric damage position and the 

optimal geometric damage parameters are close to the real 

values.  
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