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Abstract—Using quantum hydrodynamical (QHD) model the 

linear dispersion relation for the electron plasma waves propagating 
in a cylindrical waveguide filled with a dense plasma containing 
streaming electron, hole and stationary charged dust particles has 
been derived. It is shown that the effect of finite boundary and stream 
velocity of electrons and holes make some of the possible modes of 
propagation linearly unstable. The growth rate of this instability is 
shown to depend significantly on different plasma parameters. 

 
Keywords—Electron Plasma wave, Quantum plasma, Quantum 

Hydrodynamical model. 

I. INTRODUCTION 

N recent years there has been a great deal of interest in the 
investigation of various collective processes in quantum-

dusty plasmas. Quantum effects may become important in a 
variety of environments when the plasma temperature is low 
and density is high. The dispersion caused by strong density 
correlation due to quantum fluctuations can play important 
role. Quantum effects become important when the thermal de 
Broglie wavelength becomes comparable to the interparticle 
distances. It has been found to be important in intense laser-
solid interaction [1], in dense astrophysical and cosmological 
environments [2], [3], in micro-plasma systems [4], in nano-
electronic devices with nano-electronic components [5], [6]. 
Consideration of the physical processes in dusty plasma is also 
interesting because of its importance in many laboratory and 
astrophysical situations [7]. For example, in the edge region of 
tokamaks the impurities coming off from the walls of the 
vessel can create a dusty plasma. Such a dusty plasma is 
created in several plasma technologies (e.g. high frequency 
plasma etching). It has been observed that the presence of dust 
particles can modify the linear and nonlinear properties of 
plasma waves. In many situations it becomes necessary to 
include quantum effects in dusty plasma [8], [9]. Most of the 
theoretical works on waves in quantum dusty plasma have 
been done with unbounded system. With reference to 
laboratory and space plasma, it is interesting to study the 
stability of a wave in a bounded system like plasma-filled 
waveguides. The boundaries in such a system may add 
additional effects. For example, a wave with no dispersion in 
unbounded system may become dispersive in bounded system; 
a stable wave of an unbounded system may become unstable 
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in bounded geometry. Sayal and Sharma [10] have shown that 
ion-Langmuir oscillations (ILO) can propagate in cylindrical 
waveguide even when the ions are cold; the propagating ILO 
has dispersive characteristic and in the presence of 
nonlinearity it can excite solitary wave. Ghosh and Das [11] 
have investigated the effects of finite boundary on electron 
plasma waves and ion-acoustic KdV solitons using a planar 
waveguide geometry. Mondal et al. [12], 013] and 
Bhattacharya et al. [14], [15] have shown that the dimensions 
of the cylindrical system containing plasma have a positive 
influence on the stability of ion-acoustic waves. They have 
shown that due to the existence of multiple mode solution of 
the dispersion equation the usual conclusion of the analysis 
can get changed completely. Recently, the propagation of 
waves in a quantum and quantum dusty plasma has been 
investigated by a number of authors [16]-[22]. So it remains 
an interesting problem to investigate the stability of a quasi-
monochromatic wave in a quantum dusty plasma including 
finite geometry effects.  

In this paper, we consider an electron-hole quantum dusty 
plasma which may be relevant to semiconductor plasmas. We 
investigate the stability of an electron plasma wave 
propagating in a cylindrical waveguide filled with plasma 
consisting of streaming electrons, holes and stationary charged 
dust particles. Using quantum hydrodynamic (QHD) equations 
which include both the quantum statistical effect and the 
quantum diffraction effect, we have derived a dispersion 
relation from which it is shown that inclusion of streaming 
effects in finite geometry opens up the possibility of a number 
of wave modes. Some of these modes are found to be linearly 
unstable. It is shown that the finite boundary, stream velocity 
of plasma particles, quantum diffraction parameter, electron-
hole mass ratio and the charge imbalance parameter all have 
significant effects on the instability growth rate.  

II. BASIC EQUATION 

We consider a cylindrical waveguide made of perfectly 
conducting material filled with a dense homogeneous plasma 
consisting of streaming electrons, holes and stationary charged 
dust particles. At equilibrium the charge neutrality condition 
requires, 

 

0 0 0e d d hn Z n n                                    (1) 

 

where, 0 ,en 0hn  and 0dn  are respectively the equilibrium 

number density of electron, hole, and dust particles, dZ is the 

number of electrons residing on the dust grain. The plasma 
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particles are assumed to move only along the axis of the 
waveguide, which we choose as x-axis of an ( , , )r x  

cylindrical coordinate system. So, there will be no interaction 
with the corresponding empty waveguide modes that have 
only transverse electric field components (H-modes) and we 
shall consider only the E-modes. We seek to examine the 
propagation of slow modes having the phase velocities much 
less than the phase velocity of light and therefore the quasi-
static approximation can be used. Under the above conditions 
using one-dimensional QHD model the governing equations 
may be written as follows: 
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where, ,jn  ju , pj jm , and jq  are respectively the perturbed 

number density, x -component of velocity, pressure, mass and 

charge of the j -th species ( j e  for electrons and h  for 

holes ), eq e  , hq e ,   is electrostatic potential,   is 

the Planck’s constant divided by 2 and 2
  is the transverse 

Laplacian in cylindrical co-ordinates given as 
 

       
2 2

2
2 2 2

1 1

r r r r 
  

   
  

                           (5)  

 
We assume that the plasma particles behave as a one-

dimensional Fermi gas at zero temperature and therefore the 
pressure law [23]: 

 
2

3
2
03

j Fj
j j

j

m V
p n

n


                                       (6) 
 

where 2 /Fj B Fj jV k T m  is the Fermi thermal speed, TFj is 

the Fermi temperature and kB is the Boltzmann constant. 
The boundary condition to be used is that   vanishes at the 

wall of the perfectly conducting cylinder i.e. 
 

             0   at r R                                     (7) 
 

where ‘ R ’ is the radius of the cylinder. 
We now introduce the following normalizations: 
 

0/ , / , / (2 ),j j j j j s B Fen n n u u C e K T     

/ , /ph sx x C r r R 
 ,

. pht t
                          

 (8) 

 
where 2 1/2

0 0( / )pj j jn e m   is the particle plasma frequency,

FeT  is the electron Fermi temperature, 1/2(2 / )s B Fe hC K T m  

is the quantum acoustic speed and BK  is the Boltzmann 

constant. 
The equations (2)-(4) and (7) can now be written in the 

following dimensionless form: 
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0   at 1r                                (13) 

 
where /e hm m   is the electron-hole mass ratio, 

0 0/h en n   

is the charge imbalance parameter originating from dust 

particles, 1   for negatively charged background dust 

grains and 1   for positively charged dust grains; 

/Fh FeT T   is the ratio of the Fermi temperatures, 
1/2 / (2 )pe B FeH K T    is a dimensionless parameter 

proportional to quantum diffraction, / 2. hd R   in which 
2 1/2

0 0( / . )h B Fe hK T e n   is the quantum hole Debye- length. In 

many cases the electron-hole mass ratio   is taken to be one 

but in semiconductors   should be taken as the ratio of 

effective masses of electrons and holes. In that case   can be 

different from one due to parabolicity of conduction band. 

III. DERIVATION OF DISPERSION RELATION 

To derive the dispersion relation we make the following 
perturbation expansions of the field quantities 

 
(1) 2 (2)

(0) (1) 2 (2)

(1) _ 2 (2)
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n n n

u u u u
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  







                           (14) 

 
We assume that the space and time dependence of the 

perturbed quantities to be of the form exp ( )i kx t s    in 

which k  is the wave number,   is the wave frequency, and 
s  is a positive integer or zero. 

Substituting these expansions in (9)-(12) we get under 

linear approximation the following equation satisfied by (1) : 
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where, 

2 2 2 2

1/

{ ( ) (1 4)}oeku k k H
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1
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          (16) 

 

The boundary condition satisfied by (1)  is  
 

(1) 0   at  1r                                    (17) 
 
Solution of (15) under the boundary condition (17) is  
 

(1) ( )s snAJ p r                                     (18) 

 

where A  is independent of r  and snp  is the n-th zero of 

( ) 0sJ r   i.e., ( ) 0s snJ p  . 

Thus the relation (16) is the desired dispersion relation with 

snp  as the n-th zero of ( ) 0sJ r  . It includes modifications 

due to the presence of quantum diffraction effect, charged dust 
grain, electron-hole streaming and finite boundary effects.  

For a non-drifting ( (0) 0ju  ) plasma, the dispersion 

relation (16) reduces to a quadratic equation in 2 : 
 

4 2
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 (19) 
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Equation (19) has the following two roots for 2 : 
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2 2 4 0

4

1
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a
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                 (22) 
 
For non-streaming electron-hole dusty plasma we find that 

a2< 0 and 2
2 4 04a a a . So in this case we have two positive 

roots ,    and hence two stable modes of electron plasma 

wave propagation. For large k we have approximately 
 

2 2
2 2 (1 )

4

H k
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                       (23) 
2 2

2 2 ( )
4

H k
k

   
              (24) 

 
The dispersion relations (23) and (24) show that the wave 

frequencies for these modes increase with increase in µ, σ and 
H for a fixed value of k. 

In order to study the effects of finite geometry on the wave 
propagation we drop the contributions from holes, streaming 
of plasma particles and assume that electrons are globally 
neutralized by fixed background of ions then the dispersion 
relation (16) reduces to the form 

 

2 2 2 2

2

1
(1 4)

1  sn

k k H
p

kd

   
   
                   (25) 

 
It corresponds to simple electron plasma stable wave mode 

in a cylindrical waveguide filled with two component 
electron-ion plasma.  

 

 

Fig 1 Dispersion relation for the lowest radial mode (s=0, n=1) for 
different transverse dimensions of the waveguide (d= 24, 32 and 40). 

H=1.25, P01= 2.4048 
 

In Fig. 1 we have plotted the dispersion relation for the 
lowest radial mode (s=0, n=1) for different transverse 
dimensions of the waveguide. As expected finite boundary 
effects become important in the long wavelength limit when 
transverse dimension of the waveguide is comparable to the 
wavelength. 

IV. INSTABILITY OF THE WAVE 

 

In order to study the behaviour of the wave in presence of 
electron-hole streaming we note that (16) can be put, after a 
few algebraic steps, in the following form:  
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In which, 
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in which 

1 
                                           

(28) 

 
Equation (26) is a tenth order algebraic equation in k and 

corresponds to different spatial modes of wave propagation.
  We have also numerically solved the dispersion law (26). It 

is shown that for a particular set of values of µ, δ, σ, H, (0)
eu

and (0)
hu , two roots are real positive and the rest roots are 

complex. Two real positive roots correspond to two stable 
modes of propagation. Instability of the wave, when it 
propagates through the plasma medium is determined by the 
imaginary part of the complex roots. Positive values of the 
imaginary part of k signify a decaying mode whereas negative 
values of the imaginary part of k signify growing instability of 
the wave. The growth rate of instability is determined by │ki│ 
where ki is the imaginary part of k. It is shown numerically 
with typical plasma parameters that there are four complex 
roots of k having negative imaginary part. These modes are 
linearly unstable. The dependence of the growth rate of this 
instability on different plasma parameters has been studied 
numerically. 

In Fig. 2, we show the variation of │ki│ (for one typical 
mode) with quantum parameter H for different values of the 
ion streaming velocity ui0. We find that │ki│ i.e. instability 
growth rate decreases with increase in quantum diffraction 
parameter (H) but it increases with increase in electron-hole 
streaming velocity (u0). 

 

 

Fig. 2 Variation of │ki│ (for one typical mode) with quantum 
parameter H for different values of the streaming velocity u0 (0.25, 
0.375 and 0.5), where, d=5, p01=2.4048, σ=0.01, 0.1=ߜ, ω=0.1 and 

µ=0.5 
 

Fig. 3 shows the dependence of instability growth rate on 
charge imbalance parameter δ for different values of electron-
hole effective mass ratio μ. It shows that the instability growth 
rate is lower for higher values of δ and μ.  
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Fig 3 Variation of instability growth rate on charge imbalance 
parameter δ for different values of electron-hole effective mass ratio 
μ (0.5, 0.6 and 0.7), where, H=2.5, σ=0.01, ω=0.1, u0c=uoh=0.25, d=5 

V. SOME CONCLUDING REMARKS 

In the present paper linear instability of electron plasma 
wave has been theoretically studied in an electron-hole 
quantum dusty plasma in a cylindrical geometry considering 
the presence of streaming motion of electrons and holes. 
Inclusion of streaming motion of electrons and holes opens up 
the possibility of exciting a number of wave modes some of 
which are linearly unstable. The growth rate of this instability 
is shown to depend significantly on different plasma 
parameters such as stream velocity of plasma particles, 
quantum diffraction parameter, electron-hole mass ratio and 
the charge imbalance parameter. The results presented in this 
paper might be helpful in understanding of the electron-hole 
motion in semiconductors. Finally we like to point out that it 
would be interesting to extend the present linear analysis to 
the nonlinear regime. 
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