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Abstract—In this article, we will try to find an efficient boundary
approximation for the bi-objective location problem with coherent
coverage for two levels of hierarchy (CCLP). We present the
mathematical formulation of the model used. Supported efficient
solutions and unsupported efficient solutions are obtained by solving
the bi-objective combinatorial problem through the weights method
using a Lagrangean heuristic. Subsequently, the results are validated
through the DEA analysis with the GEM index (Global efficiency
measurement).
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I. INTRODUCTION

A frequent problem in the public and private area is to

determine the location of new facilities from where the

points of demand are addressed. In order to support this

decision, location problems are presented in the specialized

literature. There are different ways to address this type of

problems, like maximizing coverage or minimizing the total

distance covered.

The problems that addressed the minimization of distance

seeks that the total distance covered by the entire population

to be as little as possible with a certain amount of facilities to

install, while the problems that seeks to maximize coverage

seek coverage for the population with a certain amount of

installations. The localization problems with coverage includes

the ”Set Covering Location Problems” (SCLP), which looks

the minimum amount of facilities in order to cover the entire

population and the ”Maximal Covering Location Problem”

(MCLP), which looks for the maximum population covered

given a limited amount of facilities to install (see [5], [6],

[13] provides a review of the MCLP problems.

In literature, it is frequent to recognize the hierarchy models

in the localization problems, which seek to determine the

appropriated combination of service levels. In this type of

models, the lower service levels provides a basic service, while

a higher service level provides the most complete service in

addition to the basic service, for example, if two types of

facilities are considered (I and II) with two different services

(A and B), the most basic service (A) shall be delivered by

the type I facility (lower level) and also will be delivered by a

type II facility (higher level), which in addition to the type A

service, provides a type B service [19], [14] provides a review

on the hierarchy localization problems).
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This work will look to find the efficient frontier for the

Coherent Covering Location Problem presented by Serra [20],

which proposes a bi-objective maximization model with two

levels of hierarchy and a coherence relation.

This type of model is considered as a multiple-objective

problem, where an important activity is to find the efficient

frontier, which depends on the type of multiple-objective

problem addressed: multiple-objective lineal problem or

multiple-objective combinatorial problem. The methods

development for the multiple-objective lineal problems cannot

be directly applied to the multiple-objective combinatorial

problems always, because the efficient frontier is formed

by efficient solutions supported and efficient solutions not

supported. Fig. 1 shows the different solution points of a

bi-objective combinatorial problem, points A, B, C and D are

efficient solutions supported that belongs to the convex hull,

while points E and F are efficient solutions not supported.

Points G, H and I are dominated solutions [23].

Fig. 1 Solutions point for a bi-objective combinatorial problem

The strategy to be used in order to obtain the efficient

frontier for the localization problem with coherent coverage

is through a bi-objective combinatorial problem in order to

subsequently apply a lagrangian heuristic, where the efficient

solutions supported, efficient solutions not supported and

dominated solutions will be obtained. Subsequently, a data

envelopment analysis will be applied in order to evaluate the

efficiency of the solutions.

Section II presents the model to work, Section III explains

the methodology to work in order to present the computer

results in Section IV and finally, the conclusions are provided

in Section V.
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II. COHERENT COVERING LOCATION PROBLEM

The Coherent Covering Location Problem (CCLP) is a

two-level hierarchy problem that recognizes a relation of

coherence between hierarchy levels. In this type of problem,

the coherence is given when a population covered by a lower

level installation must receive coverage by a single installation

of the upper level. This model localizes two levels of facilities

(I and II) where the coverage of the types of services (A and

B) are maximized [20].

Mathematical formulation
Below is the mathematical formulation of the CCLP:

i = Index of set of demand areas

j = Index of potential sites for level I facilities

k = Index of potential sites for level II facilities

I = Set of demand areas

J = Set of potential sites for facilities

dij = DDistance between demand area i and facility j
SIA = Threshold distance for level I facilities offering type

A services

SIB = Threshold distance for level II facilities offering type

A services

T IB = Threshold distance for level I facilities offering type

B services

SAB = Maximun distance from a level I to a level II facility

MAi = {j ∈ J | dij ≤ SIA}
MBi = {k ∈ J | dik ≤ SIB}
NBi = {k ∈ J | dik ≤ T IB}
Oj = {k ∈ J | djk ≤ SAB}
hi = Population at node i
p = Facilities of level I

q = Facilities of level II

Variables
ZA
i = 1, if area i is covered by a type A service; 0,

otherwise

ZB
i = 1, if area i is covered by a type B service; 0,

otherwise

xj = 1, if there is a level I facility at j; 0 otherwise

yk = 1, if there is a level II facility at k; 0 otherwise

Objetive function

Max
∑
i∈I

hi · ZA
i (1)

Max
∑
i∈I

hi · ZB
i (2)

Restrictions

ZA
i ≤

∑
j∈MAi

xj +
∑

k∈MBi

yk ∀i ∈ I (3)

ZB
i ≤

∑
k∈NBi

yk ∀i ∈ I (4)

xj ≤
∑
k∈Oj

yk ∀j ∈ J (5)

∑
j∈J

xj ≤ p (6)

∑
j∈J

yj ≤ q (7)

xj + yj ≤ 1 ∀j ∈ J (8)

ZA
i , ZB

i , xi, yj ∈ 0, 1 ∀i ∈ I, j ∈ J (9)

The objective function (1) looks to maximize the population

that is covered by the type A service, while the objective

function (2) looks to maximize the population covered by the

type B service. The restrictions (3) indicates that a demand

area i is considered as covered by the type A service if there

is a level I facility that is at a lower distance than SIA or

a level II facility at a lower distance than SIB . Even when

the distances SIA and SIB refers to the same type of service,

these would not be necessarily the same, since the facility of

the level II for having more types of services shall be more

attractive for population. The (4) restrictions establishes that

a demand area i is covered by the type B service if there is

a facility of the level II at a lower distance than T IB . The

(5) restrictions are restrictions of coherence and establishes

that a level I facility must be at a lower distance than SAB

of a level II facility. Serra [20] performs an analysis on the

values that must take the critical distance SAB in order to

guarantee that there is coherence in the solution, there will be

coherence if SAB ≤ T IB − SIA (see Fig. 2). In the case that

SAB > T IB − SIA, coherence shall not be guaranteed (see

Fig. 3). The (6) restriction establishes the maximum amount

of level I facilities that can be located and the (7) restriction

establishes the maximum amount of level II facilities to be

located. The (8) restriction indicates that a level I and level

II facility cannot be located in the same area and the (9)

restrictions defines the nature of the decision variables.

Fig. 2 Level I and II facilities offerins type A service
with SAB ≤ T IB − SIA

III. EFFICIENT BORDER CONSTRUCTION

The CCLP is a bi-objective combinatorial model and in

order to obtain an approximation of the efficient frontier, the
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Fig. 3 Level I and II facilities offerins type A service
with SAB > T IB − SIA

weighting method based on the works of Alminyana et al.

[1] shall be used in order to generate the efficient frontier

of a problem of the bi-objective PQ-median and Espejo &

Galvão [12] for a hierarchy localization problem of maximum

bi-objective coverage.

In order to solve the problem, there would be three steps:

Step 1: Definition of the parametric problem for CCLP

Using the weight vector (α, (1− α)) the parametric

problem for CCLP is defined CCLP:

CCLP (α) = Max α·
∑
i∈I

hi ·ZA
i +(1−α)·

∑
i∈I

hi ·ZB
i (10)

subject to (3)-(9).

Step 2: Solve the CCLP problem (α)

In order to find feasible initial solution a vertexes

replacement heuristic is used, localizing first the facilities of

level II and subsequently level I.

Then, a lagrangian heuristic is performed for the resolution

of the problem CCLP (α). In each iteration of the heuristic, a

higher limit is obtained, from which it is possible to obtain a

viable solution for the CCLP . The model results as follows:

v(CCLP (α)λ) = Max {α ·
∑
i∈I

hi · ZA
i +

(1− α) ·
∑
i∈I

hi · ZB
i +

∑
j∈J

λj ·
⎛
⎝xj −

∑
k∈Oj

yk

⎞
⎠} (11)

subject to 3 - 4, 6-9.

The part
∑

j∈J λj ·
(
xj −

∑
k∈Oj

yk

)
corresponds to the

relaxation made, where λj corresponds to the Lagrange’s

multiplier.

Next, based on the work of Galvão [17], the resolution logic

is shown, including the update of the LaGranges multipliers

made through the subgradient method:

λi = 0
slacki = 0
escala = 100
UB = ∞
LB = Initian solution
Begin While
Solve UB
If UB is equal in the 3 last Iterations :

escala =
escala

2
Obtaining LB based on the solution of UB
slackj = xj −

∑
k∈Oj

yk

norma =

√∑
j∈J

slack2j

paso = escala · UB − LB

norma2
λj = max (0, λj + paso · slackj)
Save intermediate information
V erifications output condition

End While

Two output condition verifications are performed: i) the

difference between UB and LB must be lower than 1, this

means, (UB − LB < 1); ii) if after 500 iterations the last five

values of UB are equal, the cycle is finished and if there is any

change, the cycle continues until 5 iterations have no change

of UB.
Step 3: Validation of solutions
Fisher & Rushton [15] suggests to apply analytical

techniques in order to validate the localizations proposed in the

multiple-objective models. The Data Envelopment Analysis

(DEA) is a frequent methodology (see [10]-[12], [1]) and

it is used in order to validate the relative efficiency of the

units, generally called DMUs (Decision Making Units) (see

reference [9]).
There are two versions of DEA, depending on the

hypothesis used for the construction of the DMUs set

envelope: i) a version assuming a convex envelope (see for

example the CCR models [4] or BCC [3]; ii) a version

assuming a non-convex envelope (see for example the FDH

models (Free Disposable Hull) of Tulkens [22].
A lagrangian heuristic generates a set of solutions that must

be validated in order to determine the efficient solutions of the

set. With this purpose and using the Relative Spatial Efficiency

index (RSE).
In order to obtain the RSE of a solution, two types of

efficiency are calculated: i) the technical efficiency given

by the radial projection of the efficient frontier and II) the

efficiency of the mix given by the values of the clearances of

the DEA model used. Cooper & Tone [8] presents a discussion

on the types of efficiency in DEA.
The RSE of a given solution consists in a combination

of technical and mix efficiencies called Global Efficiency

Measure (GEM): see Cooper & Pastor [7]. Since the

CCLP efficient frontier consists in supported and not

supported efficient solutions a non-convex envelope, the FDH

methodology shall be used in order to determine the RSA of

the solutions obtained with a lagrangian heuristic.
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Obtaining the technical and mix efficiency shall be made

through an adaptation of the Arnold’s two-phase method [2.

For each one of the solutions of the CCLP two steps are

executed, step 1 where the technical efficiency is obtained and

step 2 where the mix efficiency is obtained (maintaining the

constant technical efficiency obtained in step 1).

Since that in the DEA models it is necessary to defineinput
and outputs and the solutions obtained by the CCLP are a

DMUs special case since it represents outputs, a non-convex

adaptation of the model presented by Lovell & Pastor [18],

it provides an economic point of view and a DEA model is

accepted without inputs. The authors justify the use of models

based on equivalences existing between the BCC models

without inputs or BCC models with constant inputs.

With no loss of generality, it is assumed that the lagrangian

heuristic found t intermediate solutions for the CCLP. Where(
vl1, v

l
2

)
is the value of the solutions found in the iteration l,

where vl1 and vl2 corresponds to the values of the objective

function 1 and 2 respectively. The solution to be validated

shall be denoted by
(
v01 , v

0
2

)
.

First Part: The technical efficiency of the solution to be

validated is calculated by solving the following mixed integer

programming model [18]:

Max {φ0} (12)

s.t.
∑t

l=1 λl · vlr ≥ φ0 · v0r r = 1, 2 (13)∑t
l=1 λl = 1 (14)

λl ∈ 0, 1 l = 1, ..., t (15)

φ0 without restrictions (16)

When λl = 1 it means that the solution l is selected as

reference in order to validate the solution
(
v01 , v

0
2

)
(λl = 0

otherwise). In the objective function (12) a φ0 = 1 indicates

that the validated solution has technical efficiency, while a

φ0 > 1 indicates that the validated solution is technically

inefficient. Equation (13) restriction prevents that the solution

to be validated exceeds the efficient frontier. Equation (14)

restriction indicates that a single solution must be selected as

reference for the solution to be validated. Equations (15) and

(16) restrictions defines the nature of the decision variables.

Second Part: Once the technical efficiency of the solution

to be validated denoted by φ∗
0 is obtained, the efficiency of

the mix is calculated through the following mixed integer

programming model [1]:

Max

2∑
r=1

Sr (17)

subject to (14), (15) and

∑t
l=1 λl · vlr − Sr = φ∗

0 · v0r r = 1, 2 (18)

Sr ≥ 0 r = 1, 2 (19)

where Sr is the clearance of each solution to validate. When

the Objective Function (17) is equal than 0 it means that the

validated solution has efficiency of the mix, otherwise the

solution does not have efficiency of the mix.

After performing the two stages, the two types of efficiency

are combined through the GEM indicator proposed by Cooper

& Pastor [7]. It shall be denoted as S∗
r the optimum value

obtained in the second stage and the indicator to each solution

to validate shall be applied

GEM =
1

φ∗
0

(
1 + 1

2 ·∑2
r=1

S∗
r

φ∗
0 ·v0

r

) (20)

where a GEM = 1 represents that the solution has efficiency

regarding the other solutions, while a GEM < 1 indicates

that the solution is inefficient.

IV. COMPUTER RESULTS

The calculations were made in a computer with a 2.5

GHz Intel Core processor and 4 GB of RAM memory. The

programming of Step 1 was made in Python, while the

programming of Step 2 and 3 were in AMPL language with

CPLEX as optimizer. In order to obtain the approximation of

the efficient frontier for CCLP using a lagrangian heuristic, 41

instances were ran for each one of the problems. The following

values of α ∈ [0, 1] were selected for the weighing method:

α = {(0; 1), (0, 025; 0, 975), (0, 050; 0, 950), ..., (1, 0)}.

In order to validate the results, it was decided to generate

the exact efficient frontiers for the networks of 55 and 100

nodes; these were generated with the method of restrictions

and programmed in AMPL language by using CPLEX as

optimizer.

The computer results obtained with the methodology

proposes is shown in the network of 55 nodes of Swain [21]

(Table I) and for the network of 100 nodes of Galvão &

ReVelle [16] (Table II). In addition, it shows graphs of the

solutions obtained for the network of 55 nodes (Figs. 4 and

5) and for the network of 100 nodes (Figs. 6 and 7).

Fig. 4 Network of 55 nodes: Efficient frontier obtained by the method of the
constraints (�) and solutions obtained by lagrangean heuristics (�).
n = 55, p = 1, q = 2 SIA = 6, SIB = 8, T IB = 10, SAB = 4

V. CONCLUSION

In the article, a methodology was used in order to solve a

bi-objective combinational problem, with coherence and two

levels of hierarchy (CCLP).
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TABLE I
RESULTS FOR A NETWORK OF 55 NODES OF SWAIN (SIA = 6, SIB = 8, T IB = 10, SAB = 4)

Problem Method of the constraints Lagrangean heuristics

p q
Total time Num. Sol. Total time

Num. Sol.
Num. Sol. Prom.

(segs. CPU) efficient (segs. CPU) con GEM=1 de GEM
1

1
0,4218 1 6.143,45 4 1 0,7606

2 0,7187 2 8.371,55 14 1 0,7169
3 0,7031 2 3.261,20 14 1 0,6478
1

2

0,8281 2 5.763,44 5 2 0,8594
2 1,0000 3 6.462,00 19 2 0,7326
3 1,1718 3 6.562,11 32 2 0,6628
4 1,2968 4 5.025,86 30 2 0,6204
1

3

1,9531 4 5.669,23 8 2 0,8924
2 2,8750 6 5.399,34 14 4 0,8343
3 2,8125 6 4.914,81 34 3 0,7580
4 3,2968 6 5.823,61 31 3 0,6529
5 3,3437 6 4.964,05 33 3 0,6462
6 3,4687 6 5.176,84 36 3 0,6297

TABLE II
RESULTS FOR A NETWORK OF 100 NODES OF GALVÃO & REVELLE (SIA = 40, SIB = 50, T IB = 60, SAB = 20)

Problem Method of the constraints Lagrangean heuristics

p q
Total time Num. Sol. Total time

Num. Sol.
Num. Sol. Prom.

(segs. CPU) efficient (segs. CPU) con GEM=1 de GEM
10

8
4,5156 4 29.192,0 25 4 0,8964

12 4,5000 4 27.830,9 25 4 0,8959
14 5,0156 4 23.820,6 27 4 0,8979

Fig. 5 Network of 55 nodes: Efficient frontier obtained by the method of the
constraints (�) and solutions obtained by lagrangean heuristics (�).
n = 55, p = 2, q = 3 SIA = 6, SIB = 8, T IB = 10, SAB = 4

Fig. 6 Network of 100 nodes: Efficient frontier obtained by the method of
the constraints (�) and solutions obtained by lagrangean heuristics (�).

n = 100, p = 12, q = 8 SIA = 40, SIB = 50, T IB = 60, SAB = 20

Solutions used during the process of search of the optimum

Fig. 7 Network of 100 nodes: Efficient frontier obtained by the method of
the constraints (�) and solutions obtained by lagrangean heuristics (�).

n = 100, p = 10, q = 8 SIA = 40, SIB = 50, T IB = 60, SAB = 20

solution of the lagrangian dual were used in order to find

an approximation to the efficient frontier for the CCLP,

where efficient solutions supported and efficient solutions not

supported were obtained.
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