Search results for: operator action validation
430 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074429 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach
Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian
Abstract:
The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011428 Development and Validation of the Response to Stressful Situations Scale in the General Population
Authors: C. Barreto Carvalho, C. da Motta, M. Sousa, J. Cabral, A. L. Carvalho, E. B. Peixoto
Abstract:
The aim of the current study was to develop and validate a Response to Stressful Situations Scale (RSSS) for the Portuguese population. This scale assesses the degree of stress experienced in scenarios that can constitute positive, negative and more neutral stressors, and also describes the physiological, emotional and behavioral reactions to those events according to their intensity. These scenarios include typical stressor scenarios relevant to patients with schizophrenia, which are currently absent from most scales, assessing specific risks that these stressors may bring on subjects, which may prove useful in non-clinical and clinical populations (i.e. Patients with mood or anxiety disorders, schizophrenia). Results from Principal Components Analysis and Confirmatory Factor Analysis of two adult samples from general population allowed to confirm a three-factor model with good fit indices: χ2 (144)= 370.211, p = 0.000; GFI = 0.928; CFI = 0.927; TLI = 0.914, RMSEA = 0.055, P(rmsea ≤0.005) = .096; PCFI = .781. Further data analysis of the scale revealed that RSSS is an adequate assessment tool of stress response in adults to be used in further research and clinical settings, with good psychometric characteristics, adequate divergent and convergent validity, good temporal stability and high internal consistency.Keywords: Assessment, stress events, stress response, stress vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124427 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Y. Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).
Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984426 Structural Behaviour of Partially Filled Steel Grid Composite Deck
Authors: Hyun-Seop Shin, Chin-Hyung Lee, Ki-Tae Park
Abstract:
In order to apply partially filled steel grid composite deck as the horizontal supporting structure of various kinds of infrastructures, the variation of its flexural strength according to design parameters such as cross and longitudinal bars constituting the steel grid and the type of shear connection is evaluated and compared experimentally. The result shows that the design sensitivity of the deck to the spacing of the cross bars is insignificant in the case of structure with low risk of punching failure or without load distribution problem. By means of shear connection composed by transverse rebar and longitudinal bar without additional shear stud bolts, the complete interaction between steel grid and concrete slab is able to be achieved and the composite deck can develop its bending resistance capacity.Keywords: bending strength, composite action, shear connection, steel grid composite deck
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622425 New Proxy Signatures Preserving Privacy and as Secure as ElGamal Signatures
Authors: Song Han, Elizabeth Chang, Jie Wang, Wanquan Liu
Abstract:
Digital signature is a useful primitive to attain the integrity and authenticity in various wire or wireless communications. Proxy signature is one type of the digital signatures. It helps the proxy signer to sign messages on behalf of the original signer. It is very useful when the original signer (e.g. the president of a company) is not available to sign a specific document. If the original signer can not forge valid proxy signatures through impersonating the proxy signer, it will be robust in a virtual environment; thus the original signer can not shift any illegal action initiated by herself to the proxy signer. In this paper, we propose a new proxy signature scheme. The new scheme can prevent the original signer from impersonating the proxy signer to sign messages. The proposed scheme is based on the regular ElGamal signature. In addition, the fair privacy of the proxy signer is maintained. That means, the privacy of the proxy signer is preserved; and the privacy can be revealed when it is necessary.
Keywords: ElGamal signature, proxy signature, security, hash function, fair privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817424 Role of Lemna minor Lin. in Treating the Textile Industry Wastewater
Authors: D. Sivakumar
Abstract:
Textile industry processes are among the most environmentally unfriendly industrial processes; because, they produce color wastewater that is heavily polluted the environment. Therefore, textile industry wastewater has to be treated before being discharged into the environment. In this study, experiments were conducted for different process parameters like nutrient dosage and dilution ratio against the pH and contact time to remove COD and color in a textile industrial wastewater using aquatic macrophytes Lemna minor L. The experimental results showed that the maximum percentage reduction of COD and color in a textile industry wastewater by Lemna minor L. was obtained at an optimum nutrient dosage of 50g, dilution ratio of 8, pH of 8 and contact time of 4 days. Similarly, the results of validation experiments showed that the experiments were able to reproduce the obtained optimum process parameters. The maximum removal percentage of color in an aqueous solution (86.35%) is higher than the removal of color in a textile industry wastewater (82.85). Further, the first order kinetic model was fitted well with the experimental data of this present study. Finally, this study concluded that Lemna minor L. may be used for removing all types of parameters in any type of textile industry wastewater.
Keywords: Aquatic Macrophyte, Process Parameters, Textile Industry Wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610423 Introducing an Image Processing Base Idea for Outdoor Children Caring
Authors: Hooman Jafarabadi
Abstract:
In this paper application of artificial intelligence for baby and children caring is studied. Then a new idea for injury prevention and safety announcement is presented by using digital image processing. The paper presents the structure of the proposed system. The system determines the possibility of the dangers for children and babies in yards, gardens and swimming pools or etc. In the presented idea, multi camera System is used and receiver videos are processed to find the hazardous areas then the entrance of children and babies in the determined hazardous areas are analyzed. In this condition the system does the programmed action capture, produce alarm or tone or send message.Keywords: Baby and children Care and Nursing, Intelligent Control Systems for Nursing, Electronic Care and Nursing, Dangers and safety for children and babies, Motion detection, Expert danger alarm systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879422 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785421 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720420 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco
Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui
Abstract:
The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).
Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993419 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276418 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation
Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi
Abstract:
Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612417 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process
Authors: C. Ardil
Abstract:
The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.
Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604416 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.
Keywords: 3D QSAR, CoMSIA, Triazoles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482415 Urban Life on the Go: Urban Transformation of Public Space
Authors: E. Zippelius
Abstract:
Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.Keywords: Production of space, public space, urban life, urban transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580414 Validation and Application of a New Optimized RP-HPLC-Fluorescent Detection Method for Norfloxacin
Authors: Mahmood Ahmad, Ghulam Murtaza, Sonia Khiljee, Muhammad Asadullah Madni
Abstract:
A new reverse phase-high performance liquid chromatography (RP-HPLC) method with fluorescent detector (FLD) was developed and optimized for Norfloxacin determination in human plasma. Mobile phase specifications, extraction method and excitation and emission wavelengths were varied for optimization. HPLC system contained a reverse phase C18 (5 μm, 4.6 mm×150 mm) column with FLD operated at excitation 330 nm and emission 440 nm. The optimized mobile phase consisted of 14% acetonitrile in buffer solution. The aqueous phase was prepared by mixing 2g of citric acid, 2g sodium acetate and 1 ml of triethylamine in 1 L of Milli-Q water was run at a flow rate of 1.2 mL/min. The standard curve was linear for the range tested (0.156–20 μg/mL) and the coefficient of determination was 0.9978. Aceclofenac sodium was used as internal standard. A detection limit of 0.078 μg/mL was achieved. Run time was set at 10 minutes because retention time of norfloxacin was 0.99 min. which shows the rapidness of this method of analysis. The present assay showed good accuracy, precision and sensitivity for Norfloxacin determination in human plasma with a new internal standard and can be applied pharmacokinetic evaluation of Norfloxacin tablets after oral administration in human.
Keywords: Norfloxacin, Aceclofenac sodium, Methodoptimization, RP-HPLC method, Fluorescent detection, Calibrationcurve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106413 Exterior Calculus: Economic Growth Dynamics
Authors: Troy L. Story
Abstract:
Mathematical models of dynamics employing exterior calculus are mathematical representations of the same unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-dimensional differentiable manifold leads, by analysis with exterior calculus, to a set of differential equations and a characteristic tangent vector (vortex vector) which define transformations of the system. Using this principle, a mathematical model for economic growth is constructed by proposing a characteristic differential one-form for economic growth dynamics (analogous to the action in Hamiltonian dynamics), then generating a pair of characteristic differential equations and solving these equations for the rate of economic growth as a function of labor and capital. By contracting the characteristic differential one-form with the vortex vector, the Lagrangian for economic growth dynamics is obtained.
Keywords: Differential geometry, exterior calculus, Hamiltonian geometry, mathematical economics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491412 The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems
Authors: R. Leelaruji, V. Knazkins
Abstract:
This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.
Keywords: Blackouts, cascading failure, voltage stability indices, singular value decomposition, load shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552411 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: Active thermography, finite element analysis, composite, curved structures, defects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712410 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625409 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment
Authors: Omar M. Ben-Sasi
Abstract:
A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.
Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.
Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4485408 Three-Level Tracking Method for Animating a 3D Humanoid Character
Authors: Tainchi Lu, Chochih Lin
Abstract:
With a rapid growth in 3D graphics technology over the last few years, people are desired to see more flexible reacting motions of a biped in animations. In particular, it is impossible to anticipate all reacting motions of a biped while facing a perturbation. In this paper, we propose a three-level tracking method for animating a 3D humanoid character. First, we take the laws of physics into account to attach physical attributes, such as mass, gravity, friction, collision, contact, and torque, to bones and joints of a character. The next step is to employ PD controller to follow a reference motion as closely as possible. Once the character cannot tolerate a strong perturbation to prevent itself from falling down, we are capable of tracking a desirable falling-down action to avoid any falling condition inaccuracy. From the experimental results, we demonstrate the effectiveness and flexibility of the proposed method in comparison with conventional data-driven approaches.
Keywords: Character Animation, Forward Dynamics, Motion Tracking, PD Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486407 Phenolic Compounds in Red Fruits Produced in Organic Farming at Maturation Stage
Authors: Susana M. A. Soutinho, Raquel P. F. Guiné, António M. Jordão, Fernando J. Gonçalves
Abstract:
The agricultural organic farming is different from conventional farming in a way that is aimed at providing a balanced and constructive action in agricultural systems. With the increase in intensive agriculture, undesirable changes were being observed in ecosystems with irreparable damage being caused to the natural equilibrium. This is the reason for the increasing interest in organic farming as an environment friendly agricultural production method. In the present work three red fruits produced in organic farming were analyzed, namely raspberry, gooseberry and blueberry. The samples were harvested in a local farm when at plain maturation. The results obtained allowed to conclude that the blueberry contained higher amounts of phenolic compounds, total tannins and total anthocyanins than raspberry and gooseberry. Furthermore, the HPLC analysis allowed to identify monomeric anthocyanins and phenolic acids in the three fruits studied.
Keywords: Blackberry, gooseberry, organic farming, phenolic compounds, raspberry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049406 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218405 Energy Recovery from Swell with a Height Inferior to 1.5 m
Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland
Abstract:
Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.
Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195404 Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries
Authors: Keivan Karimlou, Nemat Hassani, Abdollah Rashidi Mehrabadi
Abstract:
Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities by examining a comprehensive literature review.
Keywords: Criteria, management, shortage, sustainable, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122403 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters
Authors: Srinivasan Chandrasekaran, R. Nagavinothini
Abstract:
Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.
Keywords: Buoyant legs, dynamic analysis, offshore structures, preliminary design, random waves, triceratops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069402 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process
Authors: P. Georgieva, S. Feyo de Azevedo
Abstract:
This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839401 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520