Search results for: contact pressure and temperature dependent of friction coefficients.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5138

Search results for: contact pressure and temperature dependent of friction coefficients.

4328 Research of a Multistep Method Applied to Numerical Solution of Volterra Integro-Differential Equation

Authors: M.Imanova, G.Mehdiyeva, V.Ibrahimov

Abstract:

Solution of some practical problems is reduced to the solution of the integro-differential equations. But for the numerical solution of such equations basically quadrature methods or its combination with multistep or one-step methods are used. The quadrature methods basically is applied to calculation of the integral participating in right hand side of integro-differential equations. As this integral is of Volterra type, it is obvious that at replacement with its integrated sum the upper limit of the sum depends on a current point in which values of the integral are defined. Thus we receive the integrated sum with variable boundary, to work with is hardly. Therefore multistep method with the constant coefficients, which is free from noted lack and gives the way for finding it-s coefficients is present.

Keywords: Volterra integro-differential equations, multistepmethods, finite-difference methods, initial value problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
4327 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
4326 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: Bubbly flows, log law, boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
4325 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: Biodiesel, fatty acid esters, supercritical fluid technology, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
4324 Time Independent Behavior of Tomato Paste

Authors: A. Heidarinasab, V. Moghaddam Nansa

Abstract:

This paper deals with rheological behavior of tomato paste from the view point of time independent properties inclusive of processing variables such as sample temperature which influence on rheological properties as well as breaking temperature and concentration which beside the rheological properties, influence on the quality of final product. With this aim 10 tomato paste samples at various concentrations (17-25%) and breaking temperatures (65- 85 C o ) have been produced. The experimental results showed tomato paste behaves as a non-Newtonian semi-fluid which follows power law model that consistency coefficient (K) is supposed function of breaking temperature, concentration and sample temperature with consideration to superimpose function.

Keywords: Breaking temperature, Concentration, Power law, Rheology, Time independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380
4323 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
4322 Heat Transfer and Frictional Characteristics in Rectangular Channel with Inclined Perforated Baffles

Authors: Se Kyung Oh, Ary Bachtiar Krishna Putra, Soo Whan Ahn

Abstract:

A numerical study on the turbulent flow and heat transfer characteristics in the rectangular channel with different types of baffles is carried out. The inclined baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5o. Reynolds number is varied between 23,000 and 57,000. The SST turbulence model is applied in the calculation. The validity of the numerical results is examined by the experimental data. The numerical results of the flow field depict that the flow patterns around the different baffle type are entirely different and these significantly affect the local heat transfer characteristics. The heat transfer and friction factor characteristics are significantly affected by the perforation density of the baffle plate. It is found that the heat transfer enhancement of baffle type II (3 hole baffle) has the best values.

Keywords: Turbulent flow, rectangular channel, inclined baffle, heat transfer, friction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
4321 The Significance of the Radiography Technique in the Non-Destructive Evaluation of the Integrity and Reliability of Cast Interconnects

Authors: Keshav Pujeri, Pranesh Jain, Krutibas Panda

Abstract:

Significant changes in oil and gas drilling have emphasized the need to verify the integrity and reliability of drill stem components. Defects are inevitable in cast components, regardless of application; but if these defects go undetected, any severe defect could cause down-hole failure. One such defect is shrinkage porosity. Castings with lower level shrinkage porosity (CB levels 1 and 2) have scattered pores and do not occupy large volumes; so pressure testing and helium leak testing (HLT) are sufficient for qualifying the castings. However, castings with shrinkage porosity of CB level 3 and higher, behave erratically under pressure testing and HLT making these techniques insufficient for evaluating the castings- integrity. This paper presents a case study to highlight how the radiography technique is much more effective than pressure testing and HLT.

Keywords: Casting Defects, Interconnects, Leak Check, Pressure Test, Radiography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3499
4320 Prediction of the Rear Fuselage Temperature with Radiation Shield

Authors: Kyung Joo Yi, Seung Wook Baek, Sung Nam Lee, Man Young Kim, Won Cheol Kim, Gun Yung Go

Abstract:

In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

Keywords: Infrared signature, Nozzle flow, Radiation shield, Rear fuselage temperature, Susceptibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
4319 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsorbents of natural origin including sawdust (shisham), coconut fiber, neem bark, chitin, activated charcoal. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant Kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: Acenaphthene, anthracene, biphenyl, Coconut fiber, naphthalene, natural adsorbent, PAHs, TPO and wood powder (shisham).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042
4318 An Experimental Study on Autoignition of Wood

Authors: Tri Poespowati

Abstract:

Experiments were conducted to characterize fire properties of wood exposed to the certain external heat flux and under variety of wood moisture content. Six kinds of Indonesian wood: keruing, sono, cemara, kamper, pinus, and mahoni were exposed to radiant heat from a conical heater, result in appearance of a stable flame on the wood surface caused by spontaneous ignition. A thermocouple K-type was used to measure the wood surface temperature. Temperature histories were recorded throughout each experiment at 1 s intervals using a TC-08. Data of first ignition time and temperature, end ignition time and temperature, and charring rate have been successfully collected. It was found that the ignition temperature and charring rate depend on moisture content of wood.

Keywords: Fire properties, moisture content, wood, charring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
4317 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
4316 Effect of Physical Contact (Hand-Holding) on Heart Rate Variability

Authors: T. Pishbin, S.M.P. Firoozabadi, N. Jafarnia Dabanloo, F. Mohammadi, S. Koozehgari

Abstract:

Heart-s electric field can be measured anywhere on the surface of the body (ECG). When individuals touch, one person-s ECG signal can be registered in other person-s EEG and elsewhere on his body. Now, the aim of this study was to test the hypothesis that physical contact (hand-holding) of two persons changes their heart rate variability. Subjects were sixteen healthy female (age: 20- 26) which divided into eight sets. In each sets, we had two friends that they passed intimacy test of J.sternberg. ECG of two subjects (each set) acquired for 5 minutes before hand-holding (as control group) and 5 minutes during they held their hands (as experimental group). Then heart rate variability signals were extracted from subjects' ECG and analyzed in linear feature space (time and frequency domain) and nonlinear feature space. Considering the results, we conclude that physical contact (hand-holding of two friends) increases parasympathetic activity, as indicate by increase SD1, SD1/SD2, HF and MF power (p<0.05) and decreases sympathetic activity, as indicate by decrease LF power (p<0.01) and LF/HF ratio (p<0.05).

Keywords: Autonomic nervous system (ANS), Hand- holding, Heart rate variability (HRV), Power spectral density analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3089
4315 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields

Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul

Abstract:

The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.

Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3223
4314 On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect

Authors: Subrata Das, Sisir Kumar Guha

Abstract:

The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.

Keywords: Hydrodynamic lubrication, steady-state, micropolar lubricant, turbulent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
4313 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: Elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
4312 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load

Authors: M. Khoukhi

Abstract:

Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.

Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
4311 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow

Authors: Vai Kuong Sin

Abstract:

Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.

Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
4310 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: Genus Geobacillus, NADPH/NADH-dependent reductase, Selenium nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
4309 Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

Authors: Abdurahman H. Nour, Rosli M. Yunus, Azhary. H. Nour

Abstract:

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

Keywords: Demulsification, temperature profile, emulsion.Microwave heating, dielectric, volume rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3714
4308 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders

Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik

Abstract:

In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.

Keywords: Nanopowders, hydroxyapatite, heavy metals, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
4307 Comprehensive Evaluation on China-s Industrial Structure Optimization from the Perspective of Coordination

Authors: Ying Wang

Abstract:

From the perspective of industrial structure coordination and based on an explicit definition for the connotation of industrial structure coordination, the synergetic coefficients are used to measure the coordination degree between three industries' input structure and output structure, and then the efficacy function method is employed to comprehensively evaluate the level of China-s industrial structure optimization. It is showed that Chinese industrial structure presented a "v-shaped" variation tendency between 1996 and 2008, and its industrial structure adjustment got obvious achievements after 2003, with the industrial structure optimization level increasing continuously. However in 2009, the level of China-s industrial structure optimization declined sharply due to the decreasing contribution degree of value added structure and energy structure coordination and the lower coordination degree of value added structure and capital structure.

Keywords: China's industrial structure, Coordination degree, Efficacy function, Synergetic coefficients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
4306 An Accurate Prediction of Surface Temperature History in a Supersonic Flight

Authors: A. M. Tahsini, S. A. Hosseini

Abstract:

In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.

Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
4305 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
4304 Evaluation of a Dual-Fluid Cold-Gas Thruster Concept

Authors: J. D. Burges, M. J. Hall, E. G. Lightsey

Abstract:

A new dual-fluid concept was studied that could eventually find application for cold-gas propulsion for small space satellites or other constant flow applications. In basic form, the concept uses two different refrigerant working fluids, each having a different saturation vapor pressure. The higher vapor pressure refrigerant remains in the saturation phase and is used to pressurize the lower saturation vapor pressure fluid (the propellant) which remains in the compressed liquid phase. A demonstration thruster concept based on this principle was designed and built to study its operating characteristics. An automotive-type electronic fuel injector was used to meter and deliver the propellant. Ejected propellant mass and momentum were measured for several combinations of refrigerants and hydrocarbon fluids. The thruster has the advantage of delivering relatively large total impulse at low tank pressure within a small volume.

Keywords: cold-gas, nano-satellite, R134a, thruster

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4250
4303 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
4302 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency

Authors: Hamed Jamshidi, Pooya Djamshidi

Abstract:

In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.

Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
4301 Three-phases Model of the Induction Machine Taking Account the Stator Faults

Authors: Djalal Eddine Khodja, Aissa Kheldoun

Abstract:

In this work we present the modelling of the induction machine, taking into consideration the stator defects of the induction machine. It is based on the theory of electromagnetic coupling of electrical circuits. In fact, for the modelling of stationary defects such as short circuit between turns in the same phase, we introduce only in the matrix the coefficients of resistance and inductance of stator and in the mutual inductance stator-rotor. These coefficients take account the number of turns in short-circuit deducted from the total number of turns in the same phase; in this way we obtain the number of useful turns. In addition, all these faults involved, will be used for the creation of the database that will be used to develop an automated system failures of the induction machine.

Keywords: Asynchronous machine, Indicatory Values Statorfaults, Multi-turns Model, Three-phases Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
4300 Resistance Training as a Powerful Tool in the Prevention and Treatment of Cardiovascular Diseases

Authors: I. Struhár, L. Dovrtělová, M. Kumstát

Abstract:

Regular exercise promotes reduction in blood pressure, reduction in body weight and it also helps to increase in insulin sensitivity. Participation in physical activity should always be linked to medical screening which can reveal serious medical problems. One of them is high blood pressure. Hypertension is risk factor for one billion people worldwide and the highest prevalence is found in Africa. Another component of hypertension is that people who suffer from hypertension have no symptoms. It is estimated that reduction of 3mm Hg in Systolic Blood Pressure decreases cardiac morbidity at least 5%. The most of the guidelines suggest aerobic exercise in a prevention of cardiovascular diseases. On the other hand, it is important to emphasize the impact of resistance training. Even, it was found higher effect for reduction on the level of systolic blood pressure than aerobic exercise.

Keywords: Coronary artery disease, physical activity, prevention, resistance training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
4299 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: Solid lubricant, sliding wear grey cast iron, zinc based metal matrix composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419