WASET
	%0 Journal Article
	%A Daniela N. Correa-Llantén and  Sebastián A. Muñoz-Ibacache and  Mathilde Maire and  Jenny M. Blamey
	%D 2014
	%J International Journal of Bioengineering and Life Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 90, 2014
	%T Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven
	%U https://publications.waset.org/pdf/9999976
	%V 90
	%X The biosynthesis of nanoparticles by microorganisms,
on the contrary to chemical synthesis, is an environmentally-friendly
process which has low energy requirements. In this investigation, we
used the microorganism Geobacillus wiegelii, strain GWE1, an
aerobic thermophile belonging to genus Geobacillus, isolated from a
drying oven. This microorganism has the ability to reduce selenite
evidenced by the change of color from colorless to red in the culture.
Elemental analysis and composition of the particles were verified
using transmission electron microscopy and energy-dispersive X-ray
analysis. The nanoparticles have a defined spherical shape and a
selenium elemental state. Previous experiments showed that the
presence of the whole microorganism for the reduction of selenite
was not necessary. The results strongly suggested that an intracellular
NADPH/NADH-dependent reductase mediates selenium
nanoparticles synthesis under aerobic conditions. The enzyme was
purified and identified by mass spectroscopy MALDI-TOF TOF
technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase.
Histograms of nanoparticles sizes were obtained. Size distribution
ranged from 40-160 nm, where 70% of nanoparticles have less than
100 nm in size. Spectroscopic analysis showed that the nanoparticles
are composed of elemental selenium. To analyse the effect of pH in
size and morphology of nanoparticles, the synthesis of them was
carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For
thermostability studies samples were incubated at different
temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all
nanoparticles was less than 100 nm at pH 4.0; over 50% of
nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over
90% of nanoparticles have less than 100 nm in size. At neutral pH
(7.0) nanoparticles reach a size around 120 nm and only 20% of them
were less than 100 nm. When looking at temperature effect,
nanoparticles did not show a significant difference in size when they
were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the
nanoparticles suspension lost its homogeneity. A change in size was
observed from 0 h of incubation at 80ºC, observing a size range
between 40-160 nm, with 20% of them over 100 nm. Meanwhile
after 3 h of incubation at size range changed to 60-180 nm with 50%
of them over 100 nm. At 100 °C the nanoparticles aggregate forming
nanorod structures. In conclusion, these results indicate that is
possible to modulate size and shape of biologically synthesized
nanoparticles by modulating pH and temperature.

	%P 637 - 641