Search results for: Function optimization.
2902 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: Toolpath, part program, optimization, pocket.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10192901 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22732900 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin
Abstract:
ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23692899 Reducing Power in Error Correcting Code using Genetic Algorithm
Authors: Heesung Lee, Joonkyung Sung, Euntai Kim
Abstract:
This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21852898 Current Drainage Attack Correction via Adjusting the Attacking Saw Function Asymmetry
Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap
Abstract:
Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a MATLAB environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.
Keywords: Bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552897 Research on the Relevance Feedback-based Image Retrieval in Digital Library
Authors: Rongtao Ding, Xinhao Ji, Linting Zhu
Abstract:
In recent years, the relevance feedback technology is regarded in content-based image retrieval. This paper suggests a neural networks feedback algorithm based on the radial basis function, coming to extract the semantic character of image. The results of experiment indicated that the performance of this relevance feedback is better than the feedback algorithm based on Single-RBF.
Keywords: Image retrieval, relevance feedback, radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15362896 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation
Authors: Mahasen M. Abdel-Mageed, H. S. Zaghloul
Abstract:
Annihilations, phase shifts, scattering lengths and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wave function is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters, and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical and experimental results. Especially, the estimated positive scattering length supports the possibility of positronmagnesium bound state system that was confirmed in previous experimental and theoretical work.Keywords: Bound wave function, Positron Annihilation, scattering phase shift, scattering length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11842895 The Riemann Barycenter Computation and Means of Several Matrices
Authors: Miklos Palfia
Abstract:
An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.
Keywords: Means, matrix means, operator means, geometric mean, Riemannian center of mass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882894 A Parallel Implementation of k-Means in MATLAB
Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas
Abstract:
The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.Keywords: K-means algorithm, clustering, parallel computations, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11572893 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant
Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim
Abstract:
This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.
Keywords: Efficiency, exergy, gas turbine, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5962892 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic
Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain
Abstract:
The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27492891 Recurrent Radial Basis Function Network for Failure Time Series Prediction
Authors: Ryad Zemouri, Paul Ciprian Patic
Abstract:
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18182890 Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions
Authors: David Prochazka, Ľudmila Ballová, Karel Novotný, Jan Novotný, Radomír Malina, Petr Babula, Vojtěch Adam, René Kizek, Klára Procházková, Jozef Kaiser
Abstract:
Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.Keywords: Laser-Induced Breakdown Spectroscopy, liquid analysis, nanocrystals, nanotechnology, Quantum dots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22632889 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16302888 New Approach in Diagnostics Method for Milling Process using Envelope Analysis
Authors: C. Bisu, M. Zapciu, A. Gérard
Abstract:
This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.Keywords: diagnostics, envelope, milling, vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19352887 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.
The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.
Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.
This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.
From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.
Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20572886 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques
Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk
Abstract:
Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.
Keywords: Optimization, fishbone diagram, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10002885 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Authors: Young-Seok Choi
Abstract:
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192884 Exergetic Optimization on Solid Oxide Fuel Cell Systems
Authors: George N. Prodromidis, Frank A. Coutelieris
Abstract:
Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.
Keywords: Biogas, Exergy, Optimization, SOFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12002883 Classification of Initial Stripe Height Patterns using Radial Basis Function Neural Network for Proportional Gain Prediction
Authors: Prasit Wonglersak, Prakarnkiat Youngkong, Ittipon Cheowanish
Abstract:
This paper aims to improve a fine lapping process of hard disk drive (HDD) lapping machines by removing materials from each slider together with controlling the strip height (SH) variation to minimum value. The standard deviation is the key parameter to evaluate the strip height variation, hence it is minimized. In this paper, a design of experiment (DOE) with factorial analysis by twoway analysis of variance (ANOVA) is adopted to obtain a statistically information. The statistics results reveal that initial stripe height patterns affect the final SH variation. Therefore, initial SH classification using a radial basis function neural network is implemented to achieve the proportional gain prediction.Keywords: Stripe height variation, Two-way analysis ofvariance (ANOVA), Radial basis function neural network, Proportional gain prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16472882 Framework of TAZ_OPT Model for Ambulance Location and Allocation Problem
Authors: Adibah Shuib, Zati Aqmar Zaharudin
Abstract:
Our study is concerned with the development of an Emergency Medical Services (EMS) ambulance location and allocation model called the Time-based Ambulance Zoning Optimization Model (TAZ_OPT). This paper presents the framework of the study. The model is formulated using the goal programming (GP), where the goals are to determine the satellite locations of ambulances and the number of ambulances to be allocated at these locations. The model aims at maximizing the expected demand coverage based on probability of reaching the emergency location within targetted time, and minimizing the ambulance busyness likelihood value. Among the benefits of the model is the increased accessibility and availability of ambulances, thus, enhanced quality of the EMS ambulance services.
Keywords: Optimization, Ambulance Location, Location facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21732881 Recovering the Clipped OFDM Figurebased on the Conic Function
Authors: Linjun Wu, Shihua Zhu, Xingle Feng
Abstract:
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the peak to average power ratio (PAR) is much high. The clipping signal scheme is a useful method to reduce PAR. Clipping the OFDM signal, however, increases the overall noise level by introducing clipping noise. It is necessary to recover the figure of the original signal at receiver in order to reduce the clipping noise. Considering the continuity of the signal and the figure of the peak, we obtain a certain conic function curve to replace the clipped signal module within the clipping time. The results of simulation show that the proposed scheme can reduce the systems? BER (bit-error rate) 10 times when signal-to-interference-and noise-ratio (SINR) equals to 12dB. And the BER performance of the proposed scheme is superior to that of kim's scheme, too.
Keywords: Orthogonal Frequency Division Multiplexing, Peak-to-Average Power Ratio, clipping time, conic function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15122880 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22422879 Spread Spectrum Code Estimationby Particle Swarm Algorithm
Authors: Vahid R. Asghari, Mehrdad Ardebilipour
Abstract:
In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21362878 Overall Function and Symptom Impact of Self-Applied Myofascial Release in Adult Patients with Fibromyalgia: A Seven-Week Pilot Study
Authors: Domenica Tambasco, Riina Bray
Abstract:
Fibromyalgia is a chronic condition characterized by widespread musculoskeletal pain, fatigue, and reduced function. Management of symptoms include medications, physical treatments and mindfulness therapies. Myofascial Release is a modality that has been successfully applied in various musculoskeletal conditions. However, to the author’s best knowledge, it is not yet recognized as a self-management therapy option in Fibromyalgia. In this study, we investigated whether Self-applied Myofascial Release (SMR) is associated with overall improved function and symptoms in Fibromyalgia. Eligible adult patients with a confirmed diagnosis of Fibromyalgia at Women’s College Hospital were recruited to SMR. Sessions ran for 1 hour once a week for 7 weeks, led by the same two physiotherapists knowledgeable in this physical treatment modality. The main outcome measure was an overall impact score for function and symptoms based on the validated assessment tool for fibromyalgia, the Revised Fibromyalgia Impact Questionnaire (FIQR), measured pre- and post-intervention. Both descriptive and analytical methods were applied and reported. We analyzed results using a paired t-test to determine if there was a statistically significant difference in mean FIQR scores between initial (pre-intervention) and final (post-intervention) scores. A clinically significant difference in FIQR was defined as a reduction in score by 10 or more points. Our pilot study showed that SMR appeared to be a safe and effective intervention for our fibromyalgia participants and the overall impact on function and symptoms occurred in only 7 weeks. Further studies with larger sample sizes comparing SMR to other physical treatment modalities (such as stretching) in an randomized control trial (RCT) are recommended.
Keywords: Fibromyalgia, myofascial release, fibromyalgia impact questionnaire, fibromyalgia assessment status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3032877 Evolutionary Multi-objective Optimization for Positioning of Residential Houses
Authors: Ayman El Ansary, Mohamed Shalaby
Abstract:
The current study describes a multi-objective optimization technique for positioning of houses in a residential neighborhood. The main task is the placement of residential houses in a favorable configuration satisfying a number of objectives. Solving the house layout problem is a challenging task. It requires an iterative approach to satisfy design requirements (e.g. energy efficiency, skyview, daylight, roads network, visual privacy, and clear access to favorite views). These design requirements vary from one project to another based on location and client preferences. In the Gulf region, the most important socio-cultural factor is the visual privacy in indoor space. Hence, most of the residential houses in this region are surrounded by high fences to provide privacy, which has a direct impact on other requirements (e.g. daylight and direction to favorite views). This investigation introduces a novel technique to optimally locate and orient residential buildings to satisfy a set of design requirements. The developed technique explores the search space for possible solutions. This study considers two dimensional house planning problems. However, it can be extended to solve three dimensional cases.
Keywords: Evolutionary optimization, Houses planning, Urban modeling, Daylight, Visual Privacy, Residential compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15452876 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression
Authors: S. Anna Durai, E. Anna Saro
Abstract:
In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16702875 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13752874 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing
Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo
Abstract:
The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13442873 Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning
Authors: A Fouda, Z. Melikyan
Abstract:
Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.Keywords: air, conditioning, system, evaporative cooling, mathematical model, optimization, thermoeconomic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771