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Abstract—We present a family of data-reusing and affine
projection algorithms. For identification of a noisy linear finite
impulse response channel, a partial knowledge of a channel,
especially noise, can be used to improve the performance of
the adaptive filter. Motivated by this fact, the proposed scheme
incorporates an estimate of a knowledge of noise. A constraint, called
the adaptive noise constraint, estimates an unknown information of
noise. By imposing this constraint on a cost function of data-reusing
and affine projection algorithms, a cost function based on the adaptive
noise constraint and Lagrange multiplier is defined. Minimizing the
new cost function leads to the adaptive noise constrained (ANC)
data-reusing and affine projection algorithms. Experimental results
comparing the proposed schemes to standard data-reusing and affine
projection algorithms clearly indicate their superior performance.

Keywords—Data-reusing, affine projection algorithm, error
constraint, system identification.

I. INTRODUCTION

H IGH eigenvalue spread of the input signal correlation

matrix tend to deteriorate the convergence performance

of the least mean square (LMS)-type adaptive filters [1].

Recently, the data-reusing LMS (DR-LMS), the normalized

DR-LMS (NDR-LMS,) and the affine projection (AP)

algorithms have spawned great interest among researchers

desiring to improve convergence at reduced computational

cost, and to trade off convergence rate as a function of the

computational complexity [2]–[5]. In contrast to LMS-type

adaptive filters, these algorithms use block error and block

input vector for updating the filter coefficient.

For an identification of a noisy linear finite impulse response

(FIR) channel, a partial knowledge of a channel, especially

noise, can be used to improve the performance of the adaptive

filter [6][7]. Motivated by this fact, we expect that the

performance of DR-LMS, NDR-LMS and AP algorithms can

be further improved by incorporating a knowledge of noise.

However, a knowledge of noise generally is not available to the

filter. To overcome this obstacle, a constraint, called adaptive
noise constraint, which estimates an unknown information of

noise is introduced. By imposing this constraint on a cost

function of DR and AP algorithms, we present the adaptive
noise constrained (ANC) DR-LMS, NDR-LMS and AP

algorithms, which are based on the adaptive noise constraint

and Lagrange multiplier. Through experiments, we illustrate

that the proposed algorithms possess better performance than

standard DR-LMS, NDR-LMS, AP algorithms in terms of the

convergence rate and the misadjustment.
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II. ADAPTIVE NOISE CONSTRAINED DR AND AP

ALGORITHMS

Consider data d(i) that arise from the system identification

model

d(i) = uiw
◦ + v(i), (1)

where w◦ is a column vector for the impulse response of an

unknown system that we wish to estimate, v(i) accounts for

measurement noise and ui denotes the 1×M row input vector,

ui = [u(i) u(i− 1) · · ·u(i−M + 1)], (2)

and ui and v(i) are uncorrelated.

A. Conventional DR-LMS and NDR-LMS and AP
Algorithms

Let wi be an estimate for w◦ at iteration i. The DR-LMS,

NDR-LMS, and APA take the forms [2]

wi = wi−1 + μU∗
i ei (3)

wi = wi−1 + μU∗
iDiei (4)

wi = wi−1 + μU∗
i (UiU

∗
i + δI)−1ei, (5)

respectively, where

Ui =

⎡
⎢⎢⎢⎣

ui

ui−1

...

ui−K+1

⎤
⎥⎥⎥⎦ , di =

⎡
⎢⎢⎢⎣

d(i)
d(i− 1)

...

d(i−K + 1)

⎤
⎥⎥⎥⎦ ,

ei = di −Uiwi−1, Di = diag[1/‖ui‖2, . . . , 1/‖ui−K+1‖2],
μ is the step-size, and ∗ denotes the Hermitian transpose. It is

known [2] that these algorithms are obtained to minimize the

following cost function

J(i) = E[e∗iΠei], (6)

where Π is a positive-definite matrix. The gradient vector of

J(i) with respect to wi−1 is given by

∂J(i)

∂wi−1
= −E[e∗iΠUi]. (7)

Then, we can obtain the stochastic gradient algorithm

wi = wi−1 + μU∗
iΠei (8)

Note that the choice of Π determines algorithms of (3)–(5).

In other words, if we choose Π = I , i.e., the identity matrix,

the DR-LMS algorithm (3) is obtained. And with the choice

of data-normalized identity matrix, Di, we get the NDR-LMS

(4). Also the choice Π = (UiU
∗
i )

−1 results in the APA (5).
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The minimization of (6) over wi−1 yields wi−1 = w◦ and

ei = vi where vi = [v(i) v(i − 1) . . . v(i − K + 1)]T . This

optimal wi−1 results in

J(i)|wi−1=w◦ = E[v∗
iΠvi]. (9)

B. Adaptive Noise Constrained (ANC) Algorithms

Along this line of thought, we organize a constrained

optimization problem incorporating the knowledge of vi. The

optimum solution is obtained by minimizing J(i) subject to

J(i) = E[v∗
iΠvi]. The augmented cost function, using a

Lagrange multiplier λ, is given by

J1(i) = J(i) + γλ (J(i)− E[v∗
iΠvi])− γλ2, (10)

where γ > 0. To get a unique critical λ, a term −γλ2 is used

[6]. However, this cost function is based on the knowledge of

vi. To avoid this unpractical obstacle, E[v∗
iΠvi] is replaced

by an unknown variable ζ, which is adjusted at each iteration.

Then the proposed cost function is given by

JANC(i) = J(i) + γλ (J(i)− ζ)− γλ2 + ρζ2, (11)

where γ, ρ > 0. In (11), we know that the proposed cost

function is minimized with respect to the weight and ζ, and

maximized with respect to λ. Then the update equations are

as follows:

wi = wi−1 − μw∇wJANC (12)

λi+1 = λi + μλ∇λJANC (13)

ζi+1 = ζi − μζ∇ζJANC, (14)

where μw, μλ and μζ are positive parameter. The gradients in

(12)–(14) are simply derived as

∇wJANC = −E[e∗iΠUi] (15)

∇λJANC = γ (E[e∗iΠei]− ζ)− 2γλ (16)

∇ζJANC = γλ+ 2ρζ, (17)

respectively. Replacing the expected values of (15)–(17) by its

instantaneous values and substituting for (12)–(14), we have

the following stochastic gradient based update algorithm:

wi = wi−1 − μw(1 + γλi)U
∗
iΠei (18)

λi+1 = λi + μλγ

[
1

2
(e∗iΠei − ζi)− λi

]
(19)

ζi+1 = ζi − μζ(γλi − 2ρζi). (20)

As mentioned above, a different form of Π, i.e.,

Π = I, diag[1/‖ui‖2, . . . , 1/‖ui−K+1‖2], and (UiU
∗
i )

−1,

results in the adaptive noise constrained (ANC) DR-LMS,

NDR-LMS, and AP algorithms, respectively.

C. Properties of Proposed Algorithms

Let us consider the steady-state mean behavior of λi and ζi.
By taking the expectation of steady-state value of both sides

of (20), it leads to

E[ζ∞] = E[ζ∞]− μζ(γE[λ∞]− 2ρE[ζ∞]), (21)

E[ζ∞] =
γ

2ρ
E[λ∞], (22)

TABLE I
EXPERIMENTAL PARAMETERS OF ADAPTIVE NOISE CONSTRAINED

ALGORITHMS

ANC-DR-LMS ANC-NDR-LMS ANC-APA
μw = 0.004 μw = 0.04 μw = 0.016
μλ = 10−8 μλ = 10−7 μλ = 3× 10−6

μζ = 10−5 μζ = 10−8 μζ = 10−7

γ = 2000 γ = 5000 γ = 2000
ρ = 100 ρ = 100 ρ = 100

0 2000 4000 6000 8000 10000 12000
−40

−35

−30

−25

−20

−15

−10

−5

0

Iterations

M
S

D
 (

dB
)

(a) DR−LMS, μ = 0.01
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(b) DR−LMS, μ = 0.005

(c) ANC−DR−LMS

Fig. 1 Plots of MSD for the ANC-DR-LMS and the DR-LMS [K=4, input:
ARMA(2,2)]

and

E[λ∞] =
2ρ

4ρ+ γ
E[e∗∞Πe∞]. (23)

In addition, from (20), we find that

E[ζ∞] =
γ

2ρ
E[λ∞]. (24)

From (23) and (24), we obtain the following relation as

E[ζ∞] =
2ρ

4ρ+ γ
E[e∗∞Πe∞]. (25)

If γ >> 4ρ, ζi converges to E[e∗∞Πe∞].

III. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed algorithms by

carrying out computer simulations in a channel identification

scenario. The unknown channel H(z) has 16 taps and is

randomly generated. The adaptive filter and the unknown

channel are assumed to have the same number of taps. The

input signal is obtained by filtering a white, zero-mean,

Gaussian random sequence through a first-order system

G(z) =
1 + 0.5z−1 + 0.81z−2

1− 0.59z−1 + 0.4z−2
.

This results in a highly correlated Gaussian signal of which

the eigenvalue spread is about 105. The signal-to-noise ratio

(SNR) is calculated by

SNR = 10 log10
(
E[y2(i)]/E[v2(i)]

)
, (26)
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Fig. 2 Plots of MSD for the ANC-NDR-LMS and the NDR-LMS [K=4,
input: ARMA(2,2)]
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Fig. 3 Plots of MSD for the ANC-APA, the VS-APA [8] and the APA
[K=4, input: ARMA(2,2)]

where y(i) = uiw
◦. The measurement noise v(i) is added

to y(i) such that SNR = 30dB. The mean square deviation

(MSD), E‖w◦ − wi‖2, is taken and averaged over 100

independent trials. The parameters used for the proposed

algorithms are shown in Table. I.

Fig. 1 indicates the MSD curves of the DR-LMS and

the ANC-DR-LMS. Dashed lines indicate the results of the

DR-LMS with fixed step-sizes when we choose μ = 0.01
and 0.005. As can be seen, the ANC-DR-LMS has the

faster convergence and lower misadjustment than the standard

DR-LMS. Fig. 2 shows the MSD curves of the NDR-LMS

and the ANC-NDR-LMS. We choose the step-sizes of the

NDR-LMS as μ = 0.2 and 0.05. A similar result of Fig. 1

is observed in Fig. 2. Fig. 3 indicates the performance of

the APA and the ANC-APA. For a comparison purpose, the

variable step-size APA (VS-APA) [8] is presented. we use

C = 0.01 and μmax = 1.0 for the VS-APA, which are defined

in [8]. We know that the ANC-APA outperforms the APA and

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3
x 10

−3

Iteration number

λ
i

Fig. 4 Time evolution of λi of the ANC-APA
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Fig. 5 Time evolution of ζi of the ANC-APA

is comparable to the VS-APA.

In Fig. 4, the transient behaviour of λi of the ANC-APA is

depicted. It exhibits the time evolution of λi which increases

rapidly and then converges. Fig. 5 indicates that ζi converges

to E[v∗
i (UiU

∗
i )

−1vi]/2 which is the noise related constraint.

IV. CONCLUSION

In this paper, we present adaptive noise constrained (ANC)

DR-LMS, NDR-LMS and AP algorithms, which incorporate

a knowledge of noise without a prior information of noise.

A cost function based on the adaptive noise constrained

optimization using Lagrangian multipliers is introduced to

estimate a noise information. As a result, the convergence

performance of data-reusing and affine projection algorithms

is greatly improved.
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