
A Parallel Implementation of k-Means in MATLAB
Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract—The aim of this work is the parallel implementation
of k-means in MATLAB, in order to reduce the execution time.
Specifically, a new function in MATLAB for serial k-means algorithm
is developed, which meets all the requirements for the conversion to a
function in MATLAB with parallel computations. Additionally, two
different variants for the definition of initial values are presented.
In the sequel, the parallel approach is presented. Finally, the
performance tests for the computation times respect to the numbers
of features and classes are illustrated.

Keywords—K-means algorithm, clustering, parallel computations,
MATLAB.

I. INTRODUCTION

K -MEANS is a popular algorithm that solves clustering

problems [1]. This algorithm is simple and uses

unsupervised learning to converge to solution. K-means needs

only a certain number of clusters (k). A data set can be

classified to this certain number of clusters by the algorithm

procedure. K-means is a small repetitive part of a solution

applied to many problems. Specifically, k-means is used in

Feature Selection [2], [3], in Subsets Selections problems [4]

and generally in any problem that requires clustering.

The execution of k-means algorithms requires large

computational cost [5], [6], that leads researchers to implement

k-means using parallel techniques. MATLAB is a software

tool that supports, conveniently, numerical computations and

parallel techniques [7]-[9]. Additionally, MATLAB supports

parallel computations either in cluster of computers or in

multicore CPUs [10].

In Section II, the serial implementation of k-means in

MATLAB is presented. This implementation consists of

two variants of k-means, corresponding to two ways of

initialization. In Section III, a parallel implementation of

algorithms from Section II were made, using MATLAB

software tools and commands. Finally, in Section IV the

implemented algorithms are tested for performance. The tests

include both serial and parallel implementations of k-means

from Sections II and III and additionally the k-means build-in

implementation of MATLAB.

D. Varsamis is with the Department of Informatics Engineering,
Technological Educational Institute of Central Macedonia, 62124 Serres,
Greece (e-mail: dvarsam@teiser.gr).

C. Talagkozis is with the postgraduate program in Applied Informatics of
Department of Informatics Engineering, Technological Educational Institute
of Central Macedonia, 62124 Serres, Greece.

A. Tsimpiris is with the Department of Informatics Engineering,
Technological Educational Institute of Central Macedonia, 62124 Serres,
Greece (e-mail: alkisser@gmail.com).

P. Mastorocostas is with the Department of Computer Systems Engineering,
Piraeus University of Applied Sciences, 12244 Egaleo - Athens, Greece
(e-mail: mast@puas.gr).

II. SERIAL K-MEANS IMPLEMENTATION

A clustering algorithm was implemented using the

MATLAB software tool. This algorithm was made

from the beginning, based on the rules and steps of

k-means implementation methods. The main requirement

in development of serial k-means algorithm in MATLAB

function was the availability to convert in MATLAB function

using parallel techniques. The following MATLAB functions

implement k-means in two variants. These variants correspond

to two ways of initialization. The implemented functions take

as input a set of data, where the lines are the patterns (n) and

the columns are the features (m) of these patterns. In addition,

they get the number of classes (k) that must be separated

(nClusters). Finally, these functions take as a parameter the

number of repetitions (tolerance) that will repeat the whole

algorithm in order to avoid unfortunate bad initializations. It

is important to note that due to the initial random conditions,

it is likely to carry out a large number of steps to converge

to the minimum sum of the distances (BCSS).

A. Random Centroids

This implementation of k-means in MATLAB picks

random patterns and sets them as the initials centroids. This

implementation of k-means is called Random Centroids hence

forward RC.

B. Random Assignments

This implementation of k-means in MATLAB assigns every

pattern to any class randomly and then calculates the centroids

based on the assignments. This implementation of k-means is

called Random Assignments hence forward RA.

III. PARALLEL K-MEANS IMPLEMENTATION

One of the major disadvantages of k-means is the

complexity of O(ndk + 1), where k is the number of classes

and d is the number of dimensions. This disadvantage causes

problems when the algorithm is executed in very large sets of

data. This problem has a large computational cost, hence the

long execution time. For this reason, an attempt was made to

parallelize the serial implementations.

The most obvious way to parallelize the algorithm is to

simultaneous calculate all repetitions within tolerance [11],

[12]. Since the solution of the function is the best solution for

all iterations of the k-means algorithm, it is possible to execute

all of them in parallel and, after finishing, making the selection

of the best solution that minimizes the sum of the distance of

the standards from the center of the groups to which they

belong. Both the first version with the random assignments of

the centroid, and the second implementation with the random

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:10, 2017 

1159International Scholarly and Scientific Research & Innovation 11(10) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
10

, 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
12

8.
pd

f



assignments of the models in the groups can be parallelized.

The parallelization is available because the serial MATLAB

functions RC and RA are implemented using the principles of

parallel programming in MATLAB [7], [8] with appropriate

loops, variables, statements, indexing, matrices etc. Then,

the MATLAB functions RC and RA are easy parallelized

to parallel MATLAB functions Random Centroids Parallel

hence forward RCP and Random Assignments Parallel hence

forward RAP, respectively.

IV. PERFORMANCE TESTS

The performance tests are implemented in an efficient

computing system with the following characteristics:

• CPU Intel Xeon E5640 64x 2.67GHz (multicore)

• RAM 16GB

Additionally, for the accuracy of the performance tests, the

execution time of the tests are calculated with the formula is

given by

T ime =
t1 + t2 + t3 + . . .+ t12 − tMax − tMin

10

where ti(i = 1, ..12) is the execution time of each run with

the same data and parameters.

A. Parameters of Performance Tests

The parameters of the k-means algorithms (RC, RA and

build-in function of MATLAB kmeans()) are the following:

• n, the number of patterns

• f , the number of features

• t, tolerance (default value in k-means() is 100)

• c, number of classes

Two different performance tests are implemented. The first

one runs with respect to the number of classes (c), while the

second one runs respect to the number of features (f ). In

particular, the values of parameters are

• n = 100.000
• f = 1, 2, 3, 4, 5
• t = 100
• c = 2, 4, 5

The corresponding data are created using the build-in

function of MATLAB rand(). The results are shown in table

I

All MATLAB functions (k-means, RC, RA, RCP and RAP)

converge in the same value of measurement: between-cluster

sum of squares (BCSS) in tests that presented in Table I.

B. Performance Tests with Respect to the Number of Classes
(c)

In the following figures the execution times for

c = 2, c = 4, c = 5

of kmeans (MATLAB build-in function), RC, RA, RCP, RAP

(MATLAB user defined functions) are presented. In Figs. 1-5

the number of features is constant and equal to 1, 2, 3, 4 and

5, respectively.

Fig. 1 Execution time of functions for f = 1, and c = 2, c = 4, c = 5

Fig. 2 Execution time of functions for f = 2, and c = 2, c = 4, c = 5

Fig. 3 Execution time of functions for f = 3, and c = 2, c = 4, c = 5

C. Performance Tests with Respect to the Number of
Features (f )

In following figures the execution times for

f = 1, f = 2, f = 3, f = 4, f = 5

of kmeans (MATLAB build-in function), RC, RA, RPC, RAP

(MATLAB user defined functions) are presented. In Figs. 6-8

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:10, 2017 

1160International Scholarly and Scientific Research & Innovation 11(10) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
10

, 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
12

8.
pd

f



TABLE I
COMPARISON OF SERIAL AND PARALLEL EXECUTION

c T f n RC RA RCP RAP k-means()

2 100 1 100000 5.616309 5.887572 2.103547 2.049393 12.26237

2 100 2 100000 7.789931 7.042285 2.653606 2.392734 15.10898

2 100 3 100000 7.391408 6.029671 2.562592 2.13248 12.54087

2 100 4 100000 11.30147 9.200706 3.841012 2.979793 15.92419

2 100 5 100000 11.97893 10.21499 3.743564 3.232818 16.67794

4 100 1 100000 23.00679 22.89751 7.888749 7.882546 53.15672

4 100 2 100000 33.42405 28.7702 10.24733 8.936011 82.71037

4 100 3 100000 23.72343 24.34376 7.398941 7.444965 42.70766

4 100 4 100000 31.41331 31.81684 9.215425 9.399122 46.43585

4 100 5 100000 34.88539 34.91674 10.06608 9.869597 50.23536

5 100 1 100000 35.83778 27.98714 12.46852 9.626066 77.0053

5 100 2 100000 42.45209 39.70101 13.6033 12.71917 84.22828

5 100 3 100000 35.37246 34.70817 11.07625 10.58004 59.57364

5 100 4 100000 35.4924 36.54768 10.89426 10.89837 57.80143

5 100 5 100000 45.63234 46.8906 13.55203 13.79513 64.13661

Fig. 4 Execution time of functions for f = 4, and c = 2, c = 4, c = 5

Fig. 5 Execution time of functions for f = 5, and c = 2, c = 4, c = 5

the number of classes is constant and equal to 2, 4 and 5

respectively.

Fig. 6 Execution time of functions for c = 2, and f = 1, f = 2, f = 3,
f = 4, f = 5

Fig. 7 Execution time of functions for c = 2, and f = 1, f = 2, f = 3,
f = 4, f = 5

V. CONCLUSIONS

From the aforementioned analysis it becomes evident that

the parallel implementations of k-means lead to ameliorated

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:10, 2017 

1161International Scholarly and Scientific Research & Innovation 11(10) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
10

, 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
12

8.
pd

f



Fig. 8 Execution time of functions for c = 2, and f = 1, f = 2, f = 3,
f = 4, f = 5

performance. The parallel implementations converge to the

same solution as all the serial ones, in reduced execution

times. This is happening with respect to both the number of

classes and the number of features. Additionally, it is noticed

that the parallel algorithms have a lower increase rate as

the number of classes or the number of features increase.

Comparing the execution times among serial implementations,

it is clear that the implemented serial k-means converge faster

to the solution than the build-in function of the MATLAB

software tool. It needs to be noticed that both serial (RC, RA,

build-in MATLAB k-means()) and parallel (RCP, RAP)

implementations run on the same computing system, with the

same resources. The parallel algorithms take advantage of the

resources of the computing system, namely the cores of CPU.

ACKNOWLEDGMENT

This work was supported by the postgraduate program

in Applied Informatics of Department of Informatics

Engineering, Technological Educational Institute of Central

Macedonia-Serres.

REFERENCES

[1] P. Sneath and R. R. Sokal, Numerical Taxonomy: The Principles and
Practice of Numerical Classification. San Francisco: W.H. Freeman,
1973.

[2] A. Tsimpiris and D. Kugiumtzis, “Feature selection for classification of
oscillating time series,” Expert Systems, vol. 29, no. 5, pp. 456–477,
2012.

[3] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[4] G. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the
subset selection problem,” in Proceedings of the Eleventh International
Conference on Machine Learning. Morgan Kaufmann, 1994, pp.
121–129.

[5] D. Arthur and S. Vassilvitskii, “On the worst case complexity of the
k-means method,” Stanford InfoLab, Technical Report 2005-34, 2005.

[6] ——, “How slow is the k-means method?” in Proceedings of the
Twenty-second Annual Symposium on Computational Geometry, ser.
SCG ’06, New York, NY, USA, 2006, pp. 144–153.

[7] P. Luszczek, “Parallel programming in matlab,” International Journal of
High Performance Computing Applications, vol. 23, no. 3, pp. 277–283,
2009.

[8] G. Sharma and J. Martin, “Matlab : A language for parallel computing,”
International Journal of Parallel Programming, vol. 37, pp. 3–36, 2009.

[9] D. N. Varsamis, P. A. Mastorocostas, A. K. Papakonstantinou, and
N. P. Karampetakis, “A parallel searching algorithm for the insetting
procedure in matlab parallel toolbox,” in Federated Conference on
Computer Science and Information Systems (FedCSIS), 2012. IEEE,
2012, pp. 587–593.

[10] C. Moler, “Parallel matlab: Multiple processors and multiple cores,” The
MathWorks News & Notes, 2007.

[11] C. Lin and L. Snyder, Principles of Parallel Programming. Boston,
USA: Addison-Wesley, 2008.

[12] D. Varsamis, C. Talagkozis, P. Mastorocostas, E. Outsios, and
N. Karampetakis, “The performance of the matlab parallel computing
toolbox in specific problems,” in Advanced Information Science
and Applications Volume I, 18th Int. Conf. on Circuits, Systems,
Communications and Computers (CSCC 2014), July 17-21, 2014,
Santorini Island, Greece, vol. 1, 2014, pp. 145–150.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:10, 2017 

1162International Scholarly and Scientific Research & Innovation 11(10) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
10

, 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
12

8.
pd

f


