Search results for: optimal reaction networks.
3107 Multimode Dynamics of the Beijing Road Traffic System
Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun
Abstract:
The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phasesKeywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15313106 Mobile Ad-Hoc Service Grid – MASGRID
Authors: Imran Ihsan, Muhammad Abdul Qadir, Nadeem Iftikhar
Abstract:
Mobile devices, which are progressively surrounded in our everyday life, have created a new paradigm where they interconnect, interact and collaborate with each other. This network can be used for flexible and secure coordinated sharing. On the other hand Grid computing provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities. In this paper, efforts are made to map the concepts of Grid on Ad-Hoc networks because both exhibit similar kind of characteristics like Scalability, Dynamism and Heterogeneity. In this context we propose “Mobile Ad-Hoc Services Grid – MASGRID".Keywords: Mobile Ad-Hoc Networks, Grid Computing, Resource Discovery, Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17983105 Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison
Authors: Nima Hatami
Abstract:
In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.Keywords: Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15633104 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22563103 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks
Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu
Abstract:
Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.
Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15813102 To Join or Not to Join: The Effects of Healthcare Networks
Authors: Tal Ben-Zvi, Donald N. Lombardi
Abstract:
This study uses a simulation to establish a realistic environment for laboratory research on Accountable Care Organizations. We study network attributes in order to gain insights regarding healthcare providers- conduct and performance. Our findings indicate how network structure creates significant differences in organizational performance. We demonstrate how healthcare providers positioning themselves at the central, pivotal point of the network while maintaining their alliances with their partners produce better outcomes.Keywords: Social Networks, Decision-Making, Accountable Care Organizations, Performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15393101 Trust Based Energy Aware Reliable Reactive Protocol in Mobile Ad Hoc Networks
Authors: M. Pushpalatha, Revathi Venkataraman, T. Ramarao
Abstract:
Trust and Energy consumption is the most challenging issue in routing protocol design for Mobile ad hoc networks (MANETs), since mobile nodes are battery powered and nodes behaviour are unpredictable. Furthermore replacing and recharging batteries and making nodes co-operative is often impossible in critical environments like military applications. In this paper, we propose a trust based energy aware routing model in MANET. During route discovery, node with more trust and maximum energy capacity is selected as a router based on a parameter called 'Reliability'. Route request from the source is accepted by a node only if its reliability is high. Otherwise, the route request is discarded. This approach forms a reliable route from source to destination thus increasing network life time, improving energy utilization and decreasing number of packet loss during transmission.Keywords: Mobile Ad Hoc Networks, Trust, Energy, Reliability, AODV, TEA-AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26183100 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: Clustering analysis, community of practice, data mining, higher education, new faculty challenges, social networks, social influence, professional development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9723099 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology
Authors: Joseph C. Chen, Venkata Karthik Jakka
Abstract:
The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.
Keywords: Injection molding processes, Taguchi Parameter Design, tensile strength, shrinkage test, high-density polyethylene, HDPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8403098 Pseudo-almost Periodic Solutions of a Class Delayed Chaotic Neural Networks
Authors: Farouk Cherif
Abstract:
This paper is concerned with the existence and unique¬ness of pseudo-almost periodic solutions to the chaotic delayed neural networks (t)= —Dx(t) ± A f (x (t)) B f (x (t — r)) C f (x(p))dp J (t) . t-o Under some suitable assumptions on A, B, C, D, J and f, the existence and uniqueness of a pseudo-almost periodic solution to equation above is obtained. The results of this paper are new and they complement previously known results.
Keywords: Chaotic neural network, Hamiltonian systems, Pseudo almost periodic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13103097 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting
Authors: P. Subbaraj, V. Rajasekaran
Abstract:
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.
Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16803096 An Adverse Model for Price Discrimination in the Case of Monopoly
Authors: Daniela Elena Marinescu, Ioana Manafi, Dumitru Marin
Abstract:
We consider a Principal-Agent model with the Principal being a seller who does not know perfectly how much the buyer (the Agent) is willing to pay for the good. The buyer-s preferences are hence his private information. The model corresponds to the nonlinear pricing problem of Maskin and Riley. We assume there are three types of Agents. The model is solved using “informational rents" as variables. In the last section we present the main characteristics of the optimal contracts in asymmetric information and some possible extensions of the model.Keywords: Adverse selection, asymmetric information, informational rent, nonlinear pricing, optimal contract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13493095 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16723094 Green, Smooth and Easy Electrochemical Synthesis of N-Protected Indole Derivatives
Authors: Sarah Fahad Alajmi, Tamer Ezzat Youssef
Abstract:
Here, we report a simple method for the direct conversion of 6-Nitro-1H-indole into N-substituted indoles via electrochemical dehydrogenative reaction with halogenated reagents under strongly basic conditions through N–R bond formation. The N-protected indoles have been prepared under moderate and scalable electrolytic conditions. The conduct of the reactions was performed in a simple divided cell under constant current without oxidizing reagents or transition-metal catalysts. The synthesized products have been characterized via UV/Vis spectrophotometry, 1H-NMR, and FTIR spectroscopy. A possible reaction mechanism is discussed based on the N-protective products. This methodology could be applied to the synthesis of various biologically active N-substituted indole derivatives.
Keywords: Green chemistry, 1H-indole, NH-containing heteroaromatic, organic electrosynthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9313093 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14453092 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000oC and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated. The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: Hard magnetic materials, ceramic route, strontium ferrite, magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21813091 Control of Chaotic Dynamical Systems using RBF Networks
Authors: Yoichi Ishikawa, Yuichi Masukake, Yoshihisa Ishida
Abstract:
This paper presents a novel control method based on radial basis function networks (RBFNs) for chaotic dynamical systems. The proposed method first identifies the nonlinear part of the chaotic system off-line and then constructs a model-following controller using only the estimated system parameters. Simulation results show the effectiveness of the proposed control scheme.Keywords: Chaos, nonlinear plant, radial basis function network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443090 Human Induced Dynamic Loading on Stairs
Authors: L. Gaile, I. Radinsh
Abstract:
Based on experimental data using accelerometry technology there was developed an analytical model that approximates human induced ground reaction forces in vertical, longitudinal and lateral directions ascending and descending the stairs. Proposed dynamic loading factors and corresponding phase shifts for the first five harmonics of continuous walking force history in case of stair ascend and descend. Into account is taken imperfectness of individual footfall forcing functions, differences between continuous walking force histories among individuals. There is proposed mean synthetic continuous walking force history that can be used in numerical simulations of human movement on the stairs.
Keywords: footfall, ground reaction forces, human loads, serviceability, stair vibration, walking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22473089 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8953088 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems
Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao
Abstract:
Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.Keywords: OFDMA, Fairness, AWUF, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18273087 A Gnutella-based P2P System Using Cross-Layer Design for MANET
Authors: Ho-Hyun Park, Woosik Kim, Miae Woo
Abstract:
It is expected that ubiquitous era will come soon. A ubiquitous environment has features like peer-to-peer and nomadic environments. Such features can be represented by peer-to-peer systems and mobile ad-hoc networks (MANETs). The features of P2P systems and MANETs are similar, appealing for implementing P2P systems in MANET environment. It has been shown that, however, the performance of the P2P systems designed for wired networks do not perform satisfactorily in mobile ad-hoc environment. Subsequently, this paper proposes a method to improve P2P performance using cross-layer design and the goodness of a node as a peer. The proposed method uses routing metric as well as P2P metric to choose favorable peers to connect. It also utilizes proactive approach for distributing peer information. According to the simulation results, the proposed method provides higher query success rate, shorter query response time and less energy consumption by constructing an efficient overlay network.Keywords: Ad-hoc Networks, Cross-layer, Peer-to-Peer, Performance Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16713086 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm
Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel
Abstract:
The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32093085 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4983084 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks
Authors: Deepali Virmani , Satbir Jain
Abstract:
To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14883083 An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks
Authors: Shun-Kai Yang, Kuo-Feng Ssu
Abstract:
Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.Keywords: Coverage, energy efficiency, target localization, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16083082 Data Gathering Protocols for Wireless Sensor Networks
Authors: Dhinu Johnson, Gurdip Singh
Abstract:
Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.Keywords: Data Centric Protocols, Shortest Paths, Sensor networks, Message passing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14443081 Message Framework for Disaster Management: An Application Model for Mines
Authors: A. Baloğlu, A. Çınar
Abstract:
Different tools and technologies were implemented for Crisis Response and Management (CRM) which is generally using available network infrastructure for information exchange. Depending on type of disaster or crisis, network infrastructure could be affected and it could not be able to provide reliable connectivity. Thus any tool or technology that depends on the connectivity could not be able to fulfill its functionalities. As a solution, a new message exchange framework has been developed. Framework provides offline/online information exchange platform for CRM Information Systems (CRMIS) and it uses XML compression and packet prioritization algorithms and is based on open source web technologies. By introducing offline capabilities to the web technologies, framework will be able to perform message exchange on unreliable networks. The experiments done on the simulation environment provide promising results on low bandwidth networks (56kbps and 28.8 kbps) with up to 50% packet loss and the solution is to successfully transfer all the information on these low quality networks where the traditional 2 and 3 tier applications failed.
Keywords: Crisis Response and Management, XML Messaging, Web Services, XML compression, Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19023080 Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst
Authors: Jorge Ramírez-Ortiz, Merced Martínez Rosales, Horacio Flores Zúñiga
Abstract:
Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.
Keywords: Biodiesel, non-catalyst, roasted chicken fat, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31583079 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks
Authors: Dávid Csercsik, Sándor Imre
Abstract:
The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.
Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18523078 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757