
Abstract—In this paper, we use Radial Basis Function Networks 
(RBFN) for solving the problem of environmental interference 
cancellation of speech signal. We show that the Second Order Thin-
Plate Spline (SOTPS) kernel cancels the interferences effectively. 
For make comparison, we test our experiments on two conventional 
most used RBFN kernels: the Gaussian and First order TPS (FOTPS) 
basis functions. The speech signals used here were taken from the 
OGI Multi-Language Telephone Speech Corpus database and were 
corrupted with six type of environmental noise from NOISEX-92 
database. Experimental results show that the SOTPS kernel can 
considerably outperform the Gaussian and FOTPS functions on 
speech interference cancellation problem. 

Keywords—Environmental interference, interference 
cancellation of speech, Radial Basis Function networks, Gaussian 
and TPS kernels.

I. INTRODUCTION

HE need for robustness in adaptive interference and noise 
cancellation of the speech corrupted in the real 

environments such as airports, automobiles, aircraft and car-
cockpits, offices, and factory floors is a very important 
problem in robust speech and speaker recognition and 
verification. Many researchers have considered the noise 
reduction of corrupted speeches in noise-distorted 
environments previously. Their approaches include adaptive 
noise cancelling using linear and nonlinear techniques [1-4], 
linear and nonlinear spectral subtraction [5-7], suppression of 
nonharmonic frequencies [8, 9] and hidden Markov models 
[10]. 

 Speech interference cancellation refers to the minimization 
or cancellation of interference in an observed speech, based 
on an estimate of the interference signal that is a function of a 
separate signal called the reference signal. Linear adaptive 
filters trained with (Least Mean Square) LMS and similar 
algorithms have been usually used for interference and noise 
cancellation [11, 12]. However, for many applications linear 
filter structures cannot in general implement optimum 
interference and noise cancellation task [13]. Using linear FIR 
or IIR filters, we often cannot achieve acceptable levels of 
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interference and noise cancellation because these techniques 
are not able to effectively approximate an unknown 
deterministic nonlinear function between the available 
reference and unknown interference signals. Thus, it is 
reasonable to try to find an optimal cancellation system using 
nonlinear adaptive processing models.  

With the development of Neural Networks (NN) [15], new 
approaches to design adaptive nonlinear filters for the purpose 
of interference and noise cancellation have been proposed. 
Neural network architectures, such as multilayer perceptron 
(MLP) and radial basis function (RBF), have been 
successfully used as nonlinear tools for interference and noise 
cancellation [4]. Long training times and multiple parameters 
that need careful adjustment make it hard to apply the MLP in 
comparison with RBF networks. In addition, it was shown in 
[13] that RBF network is more accurate for the problem of 
interference cancellation than MLP and some other standard 
methods including linear filters. In Ref. [13, 14] it was 
demonstrated that accurate cancellation of interference and 
noise can be achieved with the use of RBFNs and generalized 
radial basis function networks, however the RBF networks are 
not without shortage. Depending on the architecture, the type 
of RBF kernels, and the training methods used, their 
performance varies.  

In this paper, we compare the effect of different type of 
RBF kernels, on speech interference cancellation problem. 
Experimental results show the robustness of RBF network-
based cancellers with SOTPS kernel. 

This paper organized as follows. In section 2, we consider 
the problem formulation. The RBF network architecture and 
learning rules are described in section 3. Experimental results 
and discussion are presented in Section 4. Finally, conclusions 
are presented in Section 5.

II. PROBLEM FORMULATION

Adaptive interference and noise cancellation is based upon 
the availability of a corrupted signal and a reference noise 
signal (the environmental interferences such as voice babble 
or destroyer operation noise). In Fig.1, the corrupted signal 
contains the desired speech signal s, which is corrupted by the 
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undesired interference or noise signal v generated from the 
reference noise signal Rv . The received signal is thus given by 

( ) ( ) ( )d k s k v k                                                         (1) 

The function T represents the nonlinear dynamics of the 
channel mapping between v and Rv . The principle of adaptive 

interference and noise cancellation is to adaptively process (by 
adjusting the filter's weights) the reference noise signal Rv to 

approximate the noise signal and then subtract it from the 
corrupted signal d to recover the desired signal s. The adaptive 
filter output is the noise canceller signal ( )y k . We assume 

that s, v and Rv are stationary random processes with zero 

means, s is uncorrelated with v and Rv , and v and Rv are

correlated. From Fig.1, we have 
( ) ( ) ( ) ( )e k s k v k y k                                            (2) 

Squaring and taking expectation on both sides gives 
2 2 2[ ( )] [ ( )] [( ( ) ( )) ]E e k E s k E v k y k               (3) 

The objective of adaptive interference cancellation is to 

minimize 2[( ( ) ( )) ]E v k y k  term. From equation (3), it is 
obvious that the objective is equivalent to minimizing 

2[ ( )]E e k  and

when 2 2[( ( ) ( )) ] [( ( ) ( ( ))) ]RE v k y k E v k F v k a

pproaches zero, the remaining error e(k) is, in fact, the desired 
signal s(k) where F represents the dynamics of the nonlinear 
adaptive filter. 

III. RADIAL BASIS FUNCTION NETWORKS

A. Network structure 
RBFNs are two layer networks comprising a hidden layer 

and an output layer. The hidden layer contains nodes which 

calculate the Euclidean distance r, between a center jc and an 

input vector x. The result is passed through a non-linear 
function to generate the node output, jh , which can be 

written 

( )j jh x c                                                               (4) 

where (.)  is the stimulation function of the RBFs hidden 
layer which is also called the kernel. There are some popular 
choices for the kernels type, e.g. the multiquadric, thin-plate 
spline, Gaussian function or any other suitable functions [15]. 
Gaussian is the radial basis function most commonly used in 
the neural network community and each neuron in the RBF 
layer is identified by the two parameters center jc and

width j . Its profile function is 
2

2( )
( )

r
r e                                                                    (5) 

Thin-plate spline function (TPS) is an example of a 
smoothing spline, as popularized by Wahba [16]. They are 
usually supplemented by low-order polynomial terms. An mth 
order TPS is defined as 

2( ) log( ) 1,2,3,...mr r r m                               (6) 

The thin-plate spline functions are chosen here, for their 
non-localized response which accommodates the rapidly 
changing environmental interference at the input vector. 
According to Eq. 6, we don’t need to determine width for TPS 
functions. It means the network needs fewer parameters to 
determine and lead to lower computational cost with respect to 
the Gaussian kernels. Furthermore, the RBF network’s ability 
to function approximation can depend on the distribution of 
the training samples. Uneven distribution of training data, 
however, may contribute to imprecise approximation. In that 
regard, it is shown in [17] that the TPS kernels are more 
effective than the Gaussian kernels.

In our experiment we used Gaussian and first and second 
order ( 1, 2m ) TPS kernels to investigate their effect on 
RBFN’s performance in speech interference cancellation 
problem.The output layer comprises a linear combiner which 
calculate the weighted sum of hidden layer nodes, giving an 
output of

1

n

i ij j
j

y w h                                                                    (7) 

where ijw  are the node weights of RBFN with n hidden 

nodes.

Fig .1. The principle of adaptive interference cancellation system

Adaptive
filter

T

( )s k ( )d k

( )v k
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Fig. 2. Two conventional kernels for RBFN. Left: the Gaussian, right: TPS kernel 

B.   Training rules 
To train the RBFN we used two stage training algorithm to 

set the optimal weights. Firstly, the centers are determined by 
fitting a Gaussian mixture model (GMM) with circular 
covariance using the Expectation Maximization, EM, 
algorithm. For more detail refer to [18, 19]. Note that the 
mixture model is initialized using a small number of iterations 
of the K-means algorithm. If the Gaussian kernels are used, 
the basis function widths are then set to the maximum inter-
centre squared distance. Then for hidden to output weights, 
the least squares solution can be determined using the pseudo-
inverse: 

TW T                                                                        (8) 

Where T is the desired output matrix and   is the pseudo-
inverse matrix of 

1( )T T                                                              (9)
This method provides a computationally simple but 

efficient method for the weights so that it can be computed 
very quickly and can be employed for real time applications. 

IV. EXPERIMENTAL RESULTS

In this section, we compare the effect of three above 
mentioned kernels in the RBFN on noise cancellation of 
corrupted speeches. The clean speeches used here, are selected 
from the OGI Multi-language Telephone Speech Corpus 
database [20] where prerecorded speech signals are sampled at 
8 kHz. The OGI Multi-language database consists of 
telephone speech from eleven languages such as English, 
Farsi and French. We selected four female speeches that are 
spoken in English and last about 3.5 min.   

The noises then added to the speech signals at the SNR of 
+10 dB. Six different noise signals from NOISEX-92 database 
[21] used in this experiment: 1- White Noise acquired by 
sampling high-quality analog noise generator; 2- Voice 

Babble where its source is 100 people speaking in a canteen 
that individual voices are slightly audible. 3- Destroyer engine 
room noise; 4- Destroyer operations room background noise. 
5- Factory floor noise that recorded near plate-cutting and 
electrical welding equipment. 6- And finally, Vehicle interior 
noise signal recorded in a Volvo car running at 120 km/h, in 
4th gear, on an asphalt road, in rainy conditions. 

We train our networks with white noise corrupted speeches 
and test their generalization performance with another noise 
types such that our test data not been seen during training 
process. Since the neural networks are stochastic methods, the 
results are averages of ten repetitions on data set. 

The networks initial conditions are as follows: The initial 
centers of the RBFN are determined by 50 iterations of the K-
means clustering algorithm. If the activation functions are 
Gaussians, then the basis function widths are then set to the 
maximum inter-centre squared distance. The weights 
initialized to small random values in the range of [ 0.1, 0.1]. 
The input dimension for the RBFNs is fixed to 2. 
Performance of the noise and interference cancellers is 
measured by the normalized mean squared error (NMSE): 

2

2

{( ( ) ( )) }
{ ( )}

E s k s kNMSE
E v k

                                     (10) 

where ( )s k is the simulated signal. 
Because of universal approximation feature of feed forward 

neural networks [22], it is not necessary to study the different 
class on nonlinearity mapping between reference and 
interference signal. We assume that the relation between the 
reference noise and the interference signal is a nonlinear 
function given by 

3( ) 0.6 ( ( ))Rv k v k                                                     (11)

The results of our experiments are shown in Figs. 3 and 4. 
Since the performance of such methods, highly depend on the 
number of neurons in the hidden layer, we measure 
performance of different networks versus the number of 
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hidden neurons as shown in figure 3. Figures 3a, b and c 
compare the NMSE generalization curves of the three RBFN 
with the conventional Gaussian, FOTPS and SOTPS kernels, 
respectively. The number of neurons in the hidden layer is 
varied from 3 to 40.We train our networks with 100 iterations 
of EM algorithm. 

Fig. 3. Generalization error (NMSE) versus the number of hidden 
neurons in RBFN: (a) Gaussian kernel, (b) FOTPS kernel and (c) 
SOTPS kernel.    

These results indicate that the RBFN canceller with 
Gaussian kernel performed very poorly especially when 
number of hidden neurons reaches to 40. The best 
performance was achieved for the RBFN with SOTPS kernel. 
It was about 13–23 dB better than the RBFN with FOTPS 
kernel and 13-30 dB better than RBFN with conventional 
Gaussian kernel of the same size. An important point is that 
the performance of the SOTPS RBFN canceller of a smaller 
size was better than the performance of the RBFN canceller 
with both FOTPS and Gaussian kernel of larger size. We 
conjectured that this was due to their non-localized response 
that accommodates the rapidly changing environmental 
interference state-space at the input vector.

As expected, the performance generally improved with 
increased size for RBFN cancellers. As shown above, for 
RBFN cancellers with 20 or fewer size, performance of 
interference cancellation increased with increasing the number 
of hidden neurons. For the size of 40 the Gaussian kernel 
shows different treatment because performance of both RBFN 
with FOTPS and SOTPS kernels increased but performance of 
RBFN with conventional Gaussian kernel decreased. 
Furthermore, performance of cancellers on factory floor noise 
for all size was considerably better than others. 

In second experiment, we fixed all hidden neurons to 20. 
Other experiment conditions were not changed. As shown in 
figure 4 the RBFN with Gaussian kernel have poor 
generalization on the another types of environmental 
interference because of its better performance on speech 
corrupted with white noise and poorly cancellation of other 
noise types. But RBFN cancellers with SOTPS kernel’s 
performance is very satisfactory on all type of unseen noises 
however it’s cancellation ability on noise type which used in 
training phase (white noise) was slightly lower than the 
Gaussian kernel. 

V. CONCLUSION

In this paper, we investigated the effect of different kernels 
in the radial basis function networks for environmental 
interference and noise cancellation of speech signals. The 
RBF network-based cancellers with SOTPS kernel achieve 
better approximation of the interference signal in comparison 
to the standard RBF network-based cancellers. Simulation 
study has shown generalization ability and efficiency of the 
SOTPS based interference canceller on distorted speech 
signals corrupted with unseen noise types regardless of 
network size. 
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Fig. 4. Experimental comparison of RBFN canceller kernels effect on different interference. 
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