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Abstract—This paper is concerned with the existence and unique-
ness of pseudo-almost periodic solutions to the chaotic delayed neural
networks

T (t% = —Dzx(t)+ Af(z(t)) + Bf (x (t — 7))

+ Ct! fx(p))dp+ J (t).

o
Under some suitable assumptions on A, B,C, D, J and f, the
existence and uniqueness of a pseudo-almost periodic solution to
equation above is obtained. The results of this paper are new and
they complement previously known results.

Keywords—Chaotic neural network,Hamiltonian systems, Pseudo
almost periodic.

[. INTRODUCTION

HE human brain is made up of a large number of cells
Tcalled neurons and their interconnections. An artificial
neural network is an information processing system that has
certain characteristics in common with biological neural net-
works. Since the pioneering work on Hopfield neural networks
in [13], the investigation of the dynamics of neural networks
has been the subject of much recent activity due to their
promising potential applications such as signal processing,
pattern recognition, optimization and associative memories.
Some important results have been reported (see, for example,
[6], [19], [20], [21], [22], and the references therein).

In particular, The chaotic neural network shows the more
complex spatial-temporal chaotic dynamics compared to the
coupled map lattice system in which each lattice site of
coupled map lattice systems is only coupled to its nearest
ones. Besides the neurons in the chaotic neural networks are
connected to each other in whole spatial, the delay feedback
of the networks is more complicated than the coupled map
lattice system. It is believed that the investigation of the
dynamics characters of chaotic neural networks is helpful to an
understanding of the memory rules of the brain. For example
In [2] Adachi and Aihara have studied in detail the non-
periodic associative dynamics of the chaotic neural network.
The network can retrieve the stored patterns, but they appear
non-periodically since the network is in chaos.

It is well-known, that there exist time delays in the in-
formation processing of neurons due to various reasons. For
example, time delays can be caused by the finite switching
speed of amplifier circuits in neural networks or deliberately
introduced to achieve tasks of dealing with motion-related
problems, such as moving image processing. Time delays
in the neural networks make the dynamic behaviors become
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more complicated, and may destabilize the stable equilibria
and admit almost periodic oscillation, bifurcation and chaos.
Therefore, considerable attention has been paid on the study
of delay systems in control theory and a large body of work
has been reported in the literature (see, for example, [5], [15],
[23] and the references therein).

In this paper, motivated by the above discussions, we are
concerned with the following delayed chaotic neural networks:

z(t) = —Dx(t) + Af(z (t)) + Bf (z (t — 7))

| Falp)do+ T (1)

t—o

o

This model have been the object of intensive analysis by
numerous authors in recent years. In particular, there have
been extensive results on the problem of the existence and
stability of periodic and almost periodic solutions of the
chaotic neural networks in the literature (see, for example,
[71, 81, [9], [11], [12], [14], [16], [17], [18], [24] and the
references therein). But, to the best of our knowledge, the
pseudo almost periodic oscillatory behavior for the chaotic
neural network is never considered. However, in practice,
many natural phenomena correspond to the pseudo almost
periodic solution of a functional differential equation since
the space of pseudo almost periodic functions contains the
space of almost periodic functions and the space periodic
functions. Hence, the main purpose of this paper is to study
the existence and uniqueness of the pseudo almost periodic
solution of system (1). To the best of our knowledge, this
is the first paper considering the pseudo almost-periodic of
chaotic neural network.

The rest of this paper is organized in the following way.
In Section 2, we will recall the basic properties of the pseudo
almost periodic functions. In section 3 we will introduce some
necessary notations, definitions and preliminaries which will
be used later. In Section 4, several sufficient conditions are
derived for the existence and attractively of pseudo almost
periodic solutions of the equation (1) in the suitable convex
set of PAP(R,R") .

II. ALMOST PERIODIC AND PSEUDO ALMOST PERIODIC
FUNCTIONS

Throughout this paper, we will use the following concepts
and notations. For a vector v = (v1, V2, ...,v,)T € R™, let ||v]|
1

n 2
= < > vf) denote the euclidean vector norm, and for a matrix

i=1
M € R™*", let || M|, indicate the of M induced by the spec-

1
trum norm,i.e., |[M|l, = (Amax (MTM))?, where Apax ()
represents the largest eigenvalue of a matrix. BC(R,R"™)
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denotes the set of bounded continued functions from R to
R™. Note that (BC(R,R"),||.||..) is a Banach space where
|||, denotes the sup norm

[fllo == sup lf ()] - @
teR

Let f € BC(R,R"™). We say that f is almost periodic
(Bohr a.p.) or uniformly almost periodic (u.a.p), when the
following property is satisfied: for all ¢ > 0

e >0,YaeR,I0 € [o,a+ [, |f(-+6)—f()l, Le
A subset D of R is called relatively dense in R when:
A >0,Vae R,DN[a,a+ 1] # 2.

And  so, introducing the sets FE(f,¢) =
{reR|f(-+r)— fC)ll.o <e}, we can formulate the
definition of the Bohr almost periodicity of f € C(R,R")
in the following manner: for each ¢ > 0, the set E(f,¢)
is relatively dense in R. An element of E(f,e) is called
an e—period of f. Consequently, a Bohr almost periodic
function is a continuous function which possesses very much
almost periods. We denote by AP(R,R"™) the set of the
Bohr a.p. functions from R to R”. It is well-known that the
set AP(R,R™) is a Banach space with the supremum norm.
We refer the reader to ( [1], [4], and [10]) for the basic
theory of almost periodic functions and their applications.

Besides, the concept of pseudo almost periodicity (pap) was
introduced by Zhang ( see for example [25] and [26]) in the
early nineties It is a natural generalization of the classical
almost periodicity. Define the class of functions PAP, (R, R")
as follows:

1

T
{resemmny/ m oo Wola—of.

A function f € BC (R, X) is called pseudo almost periodic
if it can be expressed as

f=h+op,

where h € AP(R,R™) and ¢ € PAP,(R,R™). The
collection of such functions will be denoted by PAP (R, R"™).

The functions h and ¢ in above definition are respectively
called the almost periodic component and the ergodic pertur-
bation of the pseudo almost periodic function f.

The decomposition given in Definition above is unique.

Observe that (PAP(R,R"),||.||,) is a Banach space and

AP(R,R") ¢ PAP(R,R") C BC(R,R")
since the function ¢(t) = cos® t +cos® v/3t +exp (—t* cos® t)

is pseudo almost periodic function but not almost periodic.

III. DESCRIPTION SYSTEM AND PRELIMINARIES

The model of the delayed chaotic neural network considered
in this paper is described by the following state equation (1)
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z(t) = —Dx(t) + Af(z (t)) + Bf (z (t — 7))

t
+C [ f(a(p)dp+ T (1)
t—o
where (z1(t),- - ,z,(t))" € R™ is the state vector of the
network at time ¢, n corresponds to the number of neurons;

d 0 - 0
0 do -~ 0
D= V1 <i<mn,d; >0.
0O -~ 0 d,

A= (aij)lgi,jgn B = (bij)lgi,jgn and C' = (Cij)1<i,j§n
are the interconnection weight matrices; f(z(t)) =
(f1 (x1(1)), -+, fn (za(t)))" € R™ denotes the neuron ac-
tivation at time ¢, J(t) = (Jy (t),---,J, (£))7 € R™ is an
external input vector function; 7 and o denote the time varying
delay and the distributed delay, respectively.

Throughout this paper, we make the following assumptions:

(Hy) The activity function f is assumed to be global
Lipschitz continuous, that is, : there exists Ly > 0 such that
for all u,v € R

1f(w) = )| < L [lu =l

Furthermore, we suppose that f(0) = 0.

(Hs) J(-) € PAP(R,R™) and 7 and ¢ > 0.

(Hs) r = =2 (| All, + | Bll, + o 1|C]l,) < L.

The class of delayed neural networks unifies several well-
known neural networks such as Hopfield neural networks
with or without delays and cellular neural networks with or
without delays. If the activation function f such that f; is
sigmoid, then Eq. (1) describes the dynamics of Hopfield
neural networks. Similarly, if the activation function satisfy
filw;) = A for all 1 < 4 < n, then Eq. (1)
describes the dynamics of cellular neural networks.

IV. MAIN RESULTS

In this section, we establish some results for the existence,
uniqueness of pseudo almost periodic solution of (1).

Lemma 1: If ¢ € PAP(R,R"), then ¢(- — h) €
PAP(R,R™).

Proof: By Definition, we can write ¢ = ¢ + @2, Where ¢
€ AP(R,R™) and @5 € APy(R,R™). Obviously,

e(=h)=p1(-—=h)+p2(-—h).

Observe that ¢; (- — h) € AP(R,R") and

T T—h
1 1
0 < — t—h)|dt = — t|| dt
< o [leatt=mlat= g [ leatt
= —T—h
T L T—h
2T + 2 1
< =T 2
< B | el
—T—h
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which implies that po(- —h) € APy(R,R™). So ¢(- —h) €
PAP(R,R").
Lemma 2: Suppose that assumptions (Hi),(Hz), (Hs)
t

hold and z(-)) € PAP(R,R") then ¢ : t — [ f(z(p))dp

t—o
belongs to PAP(R,R™).

Proof: By the composition theorem of pseudo-almost
periodic functions [3], the functions ¢ : t — f(z (¢)) belongs
to PAP(R,R™) whenever z € PAP(R,R"), then 1 can be
expressed as

P =u+w,

where u E AP(R,R"™) and v € PAPy(R,R™). Consequently,
</>(t)=f u(p dﬂ+f p)dp = ¢1(t) + ¢2 ().

t—o t—o

Let us prove the almost perlodicity of t — (T'h) (¢). For
€ > 0, we consider, in view of the almost periodicity of f,
a number L. such that in any interval [o, « + L[ one finds a
number ¢, with property that:

sup [[u (€ +6) —u()] < =
teR g

Afterwards, we can write:

t+6 t
61 (t48) — 61 ()] = / u(p)dp — / u(p)dp
t+d—o t—o

t

- /u<f+5>—u<5>d§

i—o

< / (€ + 6) — u(€)]| de

< g

which implies that ¢ (- ) € AP(R,R™). Now, we turn our
attention to ¢o(- ). First, note that s — ¢ (s) is a bounded
continuous function. Thus, we have to prove that

T
1
lim — —0.
L o [ e (s)ds =0
~r

One has
T t
1
li — t
o [ o
—T |f—0o
< lim [dp | dt
< g / (o)) do

t

. 1
- Tgr}rlooﬁ/ﬂv(t)ﬂdt /dp dt

—0

=l 2T/”” 1)l di
= 0.
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Theorem 1: Suppose that assumptions (Hy),(Hs) and
(Hs) hold. Define the nonlinear operator I' by: for each
¢ € PAP(R,R")

t

_ / e IC(Af (¢ (5)) + B (9 (s = 7))

— 00

() (t)

c / F((p))dp + J (s))ds

Then I' maps PAP(R,R™) into itself.

Proof: First of all, let us check that I is well defined.
Indeed, by lemma 1, for all if ¢ € PAP(R,R™) the function
T (p) = ¢(-—h) € PAP(R,R"). And hence, by the
composition theorem of pseudo-almost periodic functions [3],
the functions s — Af(p(t)) and s — Bf (o (t—1))
belong to PAP(R,R™) whenever ¢ € PAP(R,R™). Thus,

t — Af(w(t))JrBf( (t—7))

+C/f

belongs to PAP(R,R™). Consequently the integral (in Rie-
mann’s sense)

))dp + J (t)

Ce)0) = [ IS (5) + B (p(s 7))
R

+C/f

has a sense. The integrand is estimated by

I e IP(Af (0 (5)) + Bf (0 (s = 7))

))dp + J (s)]ds

e / Fla(p)dp -+ .7 (3)) 1< M [|e==9P |

where

M = Sup I Af(p(s)) + Bf (¢ (s — 7))

e / F(@(p))dp+ J (5) [|< +o0.

Thus, the integral

t

/ e =ICAf (o () + Bf (9 (s — 7))

+C/f

is absolutely convergent and

p))dp +J (s)lds

i

Te))| < M /t He*(t*S)DH ds =M /t e~ (t=s)age — %
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where @« = min d.
1<k<n

Since the function F' belongs to PAP(R,R™), then F can
be expressed as

f=h+gy,

where h € AP(R,R") and g € PAP;(R,R™). Consequently,
(Typ) = (Th) + (I'g) where

t

/ e~ t=9Pn(s)ds

—0o0
t

/ e~ =D g (5)ds.

—0o0

(') (¢)

and (I'g) (t) =

Let us prove the almost periodicity of ¢t — (I'h) (¢). For
€ > 0, we consider, in view of the almost periodicity of f, a
number L(s«) such that in any interval [u, o + L[ one finds
a number ¢, with property that:

sup |7 (§ +6) — h(§)]| < ea-
teR

Afterwards, we can write for s — 6 = &

(Th) (£ + 8) — (Th) (1
t+7 t
- / e HI=9)Dp(g)ds — / e~ =9Pn(s)ds

t

- / e OP (1 (¢ + ) — h(¢)) de.

— 00

and consequently:

I(Th) (t +7) = (Th) ()]

/t e 92| n (¢ +7)

t
< Ea/He*(t*ODdege,

— h(§)[l d¢

which implies the almost periodicity of (I'h). Now, we turn
our attention to (I'g). First, note that s —— (T'g)(s) is a
bounded continuous function. Thus, we have to prove that

li (Tg) ds = 0.
im o7 / I(Tg) (s)]| ds =
Clearly,

lim

(Tg) <
JJim 2)T/n 0)()lds < T+ K
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where
T t
= g fo [l
and K = lim — [ dt H ~(t=5)D g “ds
T——+o00 2T

It is clear that

T t
1
f=¢%ﬂ/ﬁ@w@wwws
Zr T
T t
e o[l
t+T
< 1 —Oox
< plim 2T/Hg || dt /e do
0
+o0
< —ox
<l 2T/||g )| dt /e do
0
< dt = 0.
< mooo / lo(o)]
Similarly,
T _T
1
= e [l
supllg
< lim *GR / dt / —os s
— 400
?@w
< . S —as
- TEI—EOO 2T /dt / ds
S oT
sup [|g(t) ||
< lim B 20T
T——+oo (6%

= 0.

Consequently, the function (I'g) belongs to PAP,(R,R"™).
Theorem 2: Suppose that assumptions (H;) — (Hs) hold.
Then the delayed chaotic neural networks

z(t) = —Da(t)+Af(p(t)+Bf(p(t—71))

+C [ saloydp+ I ),

has a unique pseudo almost periodic solution in the region

B = B(()OO:T)
Pl
= PAP(R,R" —=
{o e Pap@E) 10— gl < Z
66 1SN1:0000000091950263
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where
t
wo (t) = / e~ =)D J(s)ds
g s Le(Aly + Bl + o Cll)
«Q

Proof: Set
B = B((po,?’)

= Ly e PaP®RY), g — o < L1 e

’ ’ “a(l-n)J’

Clearly, B is a closed convex subset of PAP(R,R™) and

t

loo (0] = / e~ (=9P 1 (5)ds
t
< [ 1
- t
< e_mHJHOO/eSO‘ds
_ Ml
5

Therefore, for any ¢ € BB by using the estimate just obtained,
we see that

el < Nl = oll + ol
< e | Wle — Ml
~ a(l-r) ! a(l-7)

Let us prove that the operator I" is a self-mapping from B to
B. In fact, for any ¢ € B, we have

1Te)(t) = wo(B)l
L [All, + [1Bll, + o [IC1l, o
«

lloo
(LA
a(l—r)

IN

Ly

which implies that (I') € B. Next, we prove the mapping T’
is a contraction mapping of B. Set

F(s,p(s)) = Af(e(s) +Bf(p(s—7))

e / Fe(o))dp+ T (s).
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In view of (Hz), for any ¢, ¢ € B, we have
[Te)(t) — (C) ()]l

t

- / e~ =9D [F(s, (s)) — F(s, (s))] ds

t

< [ e 12 e - Fes. vt ds

t

< /e‘“_”” [A[f((s)) = (¥ (s))]ll ds

—o0
t

+ [ B~ 7 (6] - £~ Tl ds

+ / c / [F(e(p) — F(())] dp|| ds
< (1Al + 1BY, + o 1C1) e — ¥l
<rlo— 9l

Since, by (H3) , r < 1, then I" is a contraction mapping.
Consequently, I possess a unique fixed point ¢, € B that is
I’ (p«) = ¢«. Hence, @, is the unique pseudo almost periodic
solution of (1) in B. Then Banach’s fixed point theorem yields
that I" has a unique fixed point in B CPAP(R,R"). [ |

V. CONCLUSION

In this paper, some novel sufficient conditions are presented
ensuring the existence and uniqueness of the pseudo almost
periodic solution for delayed chaotic neural networks. All
criteria are found without assuming the networks have almost
periodic or pseudo almost periodic activation functions. The
only restriction for activation function is the lipschitz property.
All criteria can be easily adapted to many classes of recurrent
neural networks such as Hopfield neural networks, cellular
neural networks with log-sigmoid, saturate linear or triangular
basis, activation functions etc. Hence our results obtained
extend and improve existing ones.
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