Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30132
An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128030

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614

References:


[1] A. Galvis. Acceso dinámico al espectro: Estado actual, tendencias y retos. Journal Entre Ciencia e Ingeniería, Vol. 2, Issue 4, pp. 38-57, 2008.
[2] D. Rodríguez; H. Paz; M. Bohórquez. Cognitive radio technology in the UHF band. Journal Tecnura, Vol. 18, Issue 39, pp. 138-155, 2012.
[3] J. Mitola; Software radios - survey, critical evaluation and future directions, in Proceedings of the National Telesystems Conference (NTC 1992), Washington D.C, EE.UU, pp. 13/15–13/23, Mayo 1992.
[4] Danilo López; Edwin Trujillo; Oscar Gualdron. Elementos funda- mentales que componen la radio cognitiva y asignación de bandas espectrales. Información tecnológica, Vol 26, Issue 1, pp. 23-40, 2015.
[5] R. López; J. Fernández. Las redes neuronales artificiales: Fundamentos teóricos y aplicaciones prácticas. Ed. Netbiblo, ISBN: 978-84-9745-246-5, Spain, 2008.