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Abstract—Artificial neural networks (ANN) have the ability to 
model input-output relationships from processing raw data.  This 
characteristic makes them invaluable in industry domains where such 
knowledge is scarce at best.  In the recent decades, in order to 
overcome the black-box characteristic of ANNs, researchers have 
attempted to extract the knowledge embedded within ANNs in the 
form of rules that can be used in inference systems.  This paper 
presents a new technique that is able to extract a small set of rules 
from a two-layer ANN.  The extracted rules yield high classification 
accuracy when implemented within a fuzzy inference system.  The 
technique targets industry domains that possess less complex 
problems for which no expert knowledge exists and for which a 
simpler solution is preferred to a complex one. The proposed 
technique is more efficient, simple, and applicable than most of the 
previously proposed techniques.   
 

Keywords—fuzzy rule extraction, fuzzy systems, knowledge 
acquisition, pattern recognition, artificial neural networks. 
 

I. INTRODUCTION 
 

RTIFICIAL neural networks (ANN) are low-level, 
parallel-processing computational structures that have 
been proven to be universal approximators [6]; that is, 

they have the ability to learn to approximate any input-output 
relationship from simply processing raw data.  In addition, 
neural networks can tolerate incomplete or noisy inputs.  
These characteristics make artificial neural networks useful in 
domains where the input-output relationship of a system is 
unknown or difficult to model with regression techniques.  
However, their applicability is often hindered by the “black 
box” nature of ANNs, as the reasoning the network uses to 
determine an output is impossible to trace.  
In 1988, Gallant made one of the first attempts to make neural 
networks more comprehensible [4].  This was done by 
accompanying each output determined by the network with a 
rule that summarized the reasoning behind the output.  Other 
researchers quickly followed, and many concentrated on 
extracting rules that summarize the knowledge embedded 
within the architecture and weights of a trained neural 
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network.  These rules could then be used to develop an expert 
inference system.  In fact, some research suggests that the 
extracted rule set can sometimes outperform the generalization 
of the trained artificial neural network from which the rules 
were extracted [1].  During the course of the past couple of 
decades, research has spread in several directions: extracting 
rules by analyzing individual neurons, extracting rules by 
observing overall network behavior, and refining a rule base 
through neural networks.  With the publication of Buckley et 
al.’s proof of equivalence between artificial neural networks 
and fuzzy inference systems [2], research also expanded to  
include fuzzy rule extraction from trained artificial neural 
networks, [5], [8], [12].  A fuzzy logic system is a 
mathematical inference model that allows for a problem to be 
described in high-level linguistic terms and deals well with 
uncertainty.  However, fuzzy inference systems can only be 
built if the input-output relationship is known or can be 
acquired from domain experts.  Extracting fuzzy rules from a 
trained neural network offers the advantage of being able to 
build a fuzzy system, which is transparent to the user, even 
when domain expert knowledge is unavailable. 
To date, some of the most popular and prominent rule 
extraction techniques are Fu’s KT algorithm [3] and Towell 
and Shavlik’s M-of-N method [15].  Many other techniques 
have also been developed, however most of them have been 
developed to extract rules from a multilayered neural network 
used for complex problems.  As a result, they tend to be very 
complex and inefficient, they often require special neural 
network architectures or apriori knowledge, and they often 
generate a very large number of not-so-comprehensible rules. 
Yet there are many industrial domains where the problems are 
somewhat simple and no apriori knowledge exists.  
Furthermore, there are industrial domains that prefer to use 
artificial intelligence systems as verification tools that aid 
domain experts in their decisions.  For such domains, a set of 
concise and general rules that describe the input-output 
relationship and that are easily verifiable by a domain expert is 
sufficient.   Also, in such domains, complexity and 
inefficiency are vastly unfavorable.    
In this paper, a new method for extracting rules from a two-
layer neural network is introduced, one which is far simpler 
and more efficient than the current methods.  The technique 
can be implemented on the two-layer perceptron and it 
extracts a small set of general and concise rules that are able to 
accurately describe the input-output relationship.  The rule 
extraction method proposed in this paper is based on the 
method described by Huang and Xing [7] and can extract rules 
far more accurately and robustly. 
The paper is organized as follows:  In section 2 of this paper, 
an explanation of the rule extraction problem is given.  Section 
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3 contains a summary of the existing rule extraction 
approaches.  Section 4 introduces the new algorithm and the 
details of how it works.  Finally, section 5 contains the 
experimental results of comparing existing methods with the 
new algorithm and an analysis of the results, followed by the 
conclusions in section 6.  
 

II. THE RULE EXTRACTION PROBLEM 
 
As stated before, research for extracting rules from a trained 
artificial neural network has spread in many directions.  The 
main classification scheme for such algorithms is in the way 
they extract rules. Based on this criteria, an algorithm can be 
described as decompositional, pedagogical, or eclectic.  In the 
decompositional approach, each hidden and output node is 
analyzed individually, and a rule is extracted from it [1].  In 
the pedagogical approach, the overall behavior of the trained 
ANN is observed in order to extract rules that describe the 
input-output function [1].  The eclectic approach is a 
combination of the first two approaches [1].   
The proposed algorithm falls in the category of 
decompositional algorithms and in the next section we 
examine this class of algorithms as applied to feed-forward 
neural networks. 
 
In a feed-forward neural network, the output of each neuron is 
calculated as: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎞
⎜
⎝

⎛
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where 
 

xe
xAct α−+

=
1

1)( .   (2) 

 
In (1), Aj is the activation of neuron j, wij is the weight on the 
link from neuron i to neuron j, oi is the activation of neuron i,  

jθ  is the bias on the neuron j, and the activation function 
Act() is usually modeled as the sigmoidal function, as shown 
in (2), where α  is a parameter controlling the steepness of the 
sigmoidal function, which approximates the step function.  
The most important characteristic of the decompositional 
approach is that all neurons in the ANN have activations of 
approximately 0 or 1.  This ensures that the links that are 
incoming to a neuron carry a signal that is equal to the size of 
the weight or zero.  In the hidden layer neurons, binary inputs 
allow for this to happen.  In the output layer neurons, this is 
made possible by increasing the α  parameter of the 
activation functions (to approximately 10) of the hidden 
neurons, to ensure that the neurons approximate boolean 
behavior.   
Decompositional approaches extract rules from each of the 
hidden and output layer neurons by finding the combination of 
the incoming weights whose sum exceeds the bias of the 
neuron.  Rules extracted from the hidden layer neurons and the 

output layer neurons are then combined to create rules 
describing characteristics of the input-output relationship. 
 

III. RELATED WORKS 
 
In the past two decades, many different decompositional rule-
extracting algorithms have been proposed.  Fu proposed the 
KT algorithm, where, for each hidden and output neuron, it 
searches for a single link with a large enough weight to exceed 
the bias of the neuron [3].  If such a link is found, a rule is 
written.  Next, the algorithm searches for subsets of two links 
that exceed the bias, followed by a subset of three, and so on.  
When all the neurons have been searched, rules extracted from 
the hidden layer neurons are combined with rules extracted 
from the output layer neurons to create input-output 
relationship rules and rules subsumed by the more general 
rules are eliminated.  
The search space is reduced by restraining the activation of 
every node of the network to the interval [0,1], which allows 
for the assumption that negatively weighted links can only 
give rise to negated antecedents and positively weighted links 
can only give rise to non-negated antecedents [3].  Fu also 
constrains the number of antecedents in a rule and uses three 
heuristics to further reduce the search space and the number of 
extracted rules [3].   However, in spite of all this, the 
algorithm is still of exponential complexity [3].  In addition, 
imposing a maximum number of antecedents in a rule can 
significantly affect the quality of the rule set [1]. 
Towell and Shavlik present a similar algorithm [15] that is 
implemented on a special multilayer network developed by 
them [16] called the knowledge-based neural network 
(KBNN).  The existing knowledge about the domain is first 
inserted into the architecture of the network and the network is 
trained with the backpropagation algorithm.  Then links with 
similar weights are combined into clusters and the average of 
the cluster’s weight is used as the weight of each link 
belonging to that cluster.  Clusters with low link weights 
(relative to the rest of the clusters) and few members are then 
eliminated as they are assumed to have little influence on the 
outcome of the network.  The weights of the links are then 
fixed and the network is retrained with the backpropagation 
algorithm to adapt the biases of the network.  Finally, a rule is 
written for each hidden unit and output unit in the form of  
 
If M of N antecedents are TRUE then C 
 
where each antecedent is associated with a weight and the rule 
is associated with a threshold, given by the bias.  The Final 
step of the algorithm involves simplifying the rules by 
removing the weights of the antecedents and the thresholds of 
the rules where possible.  There are several shortcomings to 
the M-of-N algorithm: first of all, it is implemented on a 
KBNN as opposed to a standard multilayer perceptron, and it 
requires a clustering algorithm.  These two requirements do 
not allow for the algorithm to be portable across different 
ANN architectures.  Second, the primary goal of the M-of-N 
algorithm is to refine rules contained in the initial rule base.  
This limits its use to domains where the input-output 
relationship knowledge exists.  Also, it does not allow for new 
and unexpected knowledge to be discovered.  Finally, the 
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complexity of the M-of-N algorithm is exponential, although 
the authors argue that it is approximately cubic [15]. 
Krishnan et al. provide another technique for extracting rules 
from feed-forward neural network [10].  The main idea is to 
sort the incoming weights of a neuron in descending order, 
then create combinations of weights of all possible sizes and 
order the combinations in descending order based on the sum 
of the weights in the combination.  Their main goal is to 
reduce the search space by checking first if the combinations 
that yield the highest sum of weights exceed the bias.  If these 
combinations fail, the subsumed combinations can be pruned 
without being checked.  Despite the effort however, the 
algorithm is still of exponential complexity [10].   
While the above algorithms extract crisp rules and only deal 
with discrete inputs, other researchers have proposed 
algorithms for extracting fuzzy rules or systems that deal with 
fuzzy inputs.  Hayashi and Imura proposed a fuzzy neural 
expert system with automated extraction of fuzzy rules that 
can handle fuzzy and crisp inputs [5].  In addition, each 
extracted rule is associated with a fuzzy truth value such as 
Very True or Possibly True, and each antecedent in a rule is 
associated with a fuzzy importance value such as Very 
Important or Moderately Important.  However the accuracy of 
the system is only 75.5% [5]. 
Kasabov’s REFuNN algorithm [8],[9], applied to the specially 
constructed FuNN fuzzy neural network also has the ability to 
extract fuzzy weighted rules as well as simple fuzzy rules; 
however, the number of rules extracted for a fairly simple 
problem such as the Iris classification data [14] is very large.  
NEFCLASS (Neuro Fuzzy CLASSification) is a neuro-fuzzy 
system for the classification of data that is presented by Nauck 
and Kruse in [12], [13].  The goal of the system is to learn 
fuzzy rules from the training data patterns as it classifies each 
pattern into crisp classes.  Although the system performs well 
(96.67% accuracy), the rules are never tested on a fuzzy 
inference system and the system does not perform any better 
than the standard three layer perceptron.  In addition, a ceiling 
is placed on the maximum number of rules extractable, a 
constraint that could seriously hinder the quality of the rule 
set. 
As mentioned in the introduction, above techniques attempt to 
extract rules for complex problems and therefore are complex, 
inefficient, and not general enough to be applied across 
different domains.  Huang and Xing presented a new 
technique for extracting rules that can be used for domains 
with simpler problems [7].  Their technique consists of several 

steps.  In the first step, given n-continuous-valued input 
parameters Ii, i=1,2,…,n, each input parameter is classified 
into two or more equally populated sets.  Then each set is 
represented with a binary scheme.  For example, if each input 
parameter is divided into two sets, small and large, the set {Ii 
is small} is represented as [1 0], and the set {Ii is large} is 
represented as [0 1].  As a result, a problem of n continuous-
valued input parameters is transformed into a problem of 2n 
input parameters where each input is binary. 
Next, a two layer feed-forward back-propagation neural 
network is constructed, with 2n inputs and as many output 
nodes as the number of classes in the data.  Once the network 
is trained, the most dominant rule from each output neuron is 
extracted.  This is done by determining, for each input Ii, its 
binary input with the highest weight and assuming that input 
to be 1.  Therefore, the antecedents of the extracted rule 
include all input parameters, some of which can then be 
pruned.  The pruning process allows for the rule to be more 
general and therefore yield more accurate results.  The pruning 
algorithm first sorts the input parameters in ascending order of 
their maximum weights.  Then, the algorithm prunes the 
parameters one at a time, starting with the input parameter 
with the smallest maximum weight, so long as the neuron 
remains activated even when the maximum-weight binary 
input of the input parameter is off and the minimum-weight 
binary input is on. 
The main problem with this rule-extraction technique lies in 
the pruning process:  
It assumes that how an input parameter affects the activation 
of an output neuron depends only on the maximum weight of 
the parameter, and not on the minimum weight.  This incorrect 
assumption causes antecedents that can be pruned to 
sometimes escape pruning, making the rules less general, and 
consequently diminishing the accuracy of the fuzzy inference 
system implementing the extracted rules.  
 

IV. A NEW RULE-EXTRACTING ALGORITHM 
 
In this section we describe the proposed rule extraction 
algorithm that can overcome the above disadvantages; We 
also show that this algorithm can extract rules that yield much 
higher accuracy and robustness.  
Fig. 1 shows a simplified neural network with one output node 
and six binary inputs, representing the three continuous-valued 
input parameters, I1, I2, and I3.   
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Fig. 1 A neural network with 3 input parameters, two Boolean inputs for each input parameter, and one output. 

 
It should be noted that the binary inputs within each input 
parameter group are dependent.  For example, in Fig. 1, if the 
value of parameter I1 is “small” then I11 will be 1 and I12 must 
be 0.   
To extract the most dominant rule for the output node, the 

maximum weight
iimw of each input parameter Ii is 

determined: 

11mw = 0.6, 
22mw =0.5, and 

33mw =0.7 
 
Therefore, the extracted rule is: 
If I1 is I12 AND I2 is I21 AND I3 is I32 then Output is O. 
 
In order to prune all the antecedents of a rule that do not affect 
the activation of the output neuron, for each input parameter Ii, 
the absolute difference between the maximum 

weight
iimw and the minimum weight 

iilw of its binary 
inputs is calculated.   The input parameters are then sorted in 
ascending order of this absolute difference.  Finally, the 
algorithm prunes each input parameter, starting with the one 
with the smallest absolute difference, so long as the neuron 
remains activated if its maximum-weight binary input is off 
and the minimum-weight binary input is on. Pseudo code for 
the pruning algorithm is as follows: 
 
For i = 1, 2, …, n 

Find li such that iilw
=min[wij], j = 1,2,3. 

 Find ii ilimi wwd −=
 

Sort Ii in ascending order of d i 

Let ∑ =
−=

n

i im BwS
i1  

For i = 1, 2, …, n (note that now di are sorted) 

Let ii ilim wwSS +−=
 

 If S<0  
Exit 

 Else 
  Remove antecedent that involves parameter Ii 
 
For the network shown in Fig. 1, the rule antecedents would 
be pruned as follows according to the new algorithm: 

Find ,
iimw

iilw and di for each input parameter: 

11mw = 0.6, 
22mw =0.5, and 

33mw =0.7 

11lw = 0.5, 
22lw = 0.1, 

33lw = 0.1 
 
d1 = 0.6 – 0.5 = 0.1, d2 = 0.5 – 0.1 = 0.4, d3 = 0.7 -0.1 = 0.6 
 
Sort Ii in ascending order of d i: I1 I2 I3 
S = 0.6 + 0.5 + 0.7 – 1.5 = 0.3 
For i = 1 
 S = 0.3 – 0.6 + 0.5 = 0.2 
 0.2>0 
 Remove antecedent that involves parameter I1 
For i = 2 
 S = 0.2 – 0.5 + 0.1 = -0.2 
 -0.2<0, Exit 
 
So the rule from the improved pruning algorithm is: 
If I2 is I21 AND I3 is I32 then Output is O. 
 

V. EXPERIMENTAL RESULTS & ANALYSIS 
 
5.1 Experimental Results 
 
The new algorithm proposed in this paper targets the problem 
of efficiently extracting a small set of general rules that yield 

1.5

w32 = 0.1 

w31 = 0.7 

w22 = 0.5 

w21 = 0.1 

w12 = 0.5

w11 = 0.6

I11 

I12 

I21 

I22 

I31 

I32 

  O 

Bias 
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high accuracy.  In order to demonstrate the accuracy of the 
new algorithm, we compare it against existing algorithms 
using the Iris classification data set [14]. The data set contains 
3 classes (Iris-Virginica, Iris-Versicolor, or Iris-Setosa) where 
each class refers to a type of iris plant.  There are 150 data 
records, 50 for each type of class.  The Iris-Setosa class is 
linearly separable from the Iris-Versicolor and Iris-Virginica 
classes but the latter two are not linearly separable from each 
other.  The classification problem consists of finding which 
class an Iris plant belongs to based on the four continuous-
valued input parameters: sepal length, sepal width, petal 
length, and petal width.   
For the experiment, each input parameter of the Iris data set 
was separated into 3 sets: small, medium, and large.  The data 
was then converted to binary data.. In order to better measure 
the accuracy of each algorithm, testing was automated using a 
program developed for this purpose.  
For the experiments, two parameters were varied:  data used to 
train the networks and the shape of the membership functions 
of the fuzzy inference systems in which the extracted rules 
were implemented.  The network training data varied between 
all the data points in the Iris data set and only the data points 
in the data set that did not introduce a nonlinear separation 
between the Iris-Versicolor and the Iris-Virginica classes 
(from hereon referred to as the filtered Iris data set).  The 
shape of the membership functions used in the fuzzy systems 
varied between triangular and generalized bell.  The variations 
of these two parameters created four test cases.  In the first test 

case (All_Bell) the neural network was trained with all the 
data in the Iris data set and the extracted rules were 
implemented in a fuzzy inference system with bell 
membership functions.  In the second test case 
(All_Triangular), the network was also trained with all the 
data, but the extracted rules were implemented in a fuzzy 
system with triangular membership functions.  Likewise, for 
the third and fourth test cases, the networks were trained with 
the filtered data set, and in the third test case (Filtered_Bell), 
the extracted rules were implemented on a fuzzy system with 
bell membership functions while in the fourth test case 
(Filtered_Triangular) they were implemented in a fuzzy 
system with triangular membership functions.  
One thousand tests were conducted for each test case, totaling 
to four thousand tests, for which four thousand two-layer 
feedforward networks were trained using the back-propagation 
algorithm.  Of these, the networks that performed poorly 
(achieved a mean square error measurement of greater than 
0.05) were removed.  This is because it is obvious that 
extracting rules from networks with poor performance will 
yield poor rules and in practice such networks would not be 
used to extract rules.  Once such networks were removed from 
the experimental data, each test case comprised of anywhere 
between 775 tests and 835 tests.  The average accuracy results 
of each test case are shown in Table I, together with the 
average variance. The average classification accuracy and 
variance of the network is also shown in Table I.   

 
TABLE I 

EXPERIMENTAL RESULTS FOR THE IRIS DATA SET 

 
As it can be seen from Table I, the new algorithm performs 
much better than the original algorithm.  The average accuracy 
of the new algorithm is 85%, as shown in the last row of Table 
I.  The average accuracy of the original algorithm is 78%.  In 
addition, the variance in accuracy is lower for the new 
algorithm by a factor of 5:  The average variance in accuracy 
of the rules extracted by the original algorithm [7] is 0.012, 
while the average variance accuracy of the rules extracted by 
the new algorithm is 0.0025.  The lower variance of the new 
algorithm illustrate that the new algorithm is not only more 
accurate, but also more reliable in its accuracy. 
The fact that the new algorithm performs with almost the same 
accuracy whether the data is filtered or not, shows its 
robustness: the algorithm is capable of learning the most 
general and accurate rules even when bad data points are 
present in the training set.  In practice, this has a great impact 
on the applicability of the algorithm:  Most industry domains 
are not aware which data points introduce the nonlinearity in 
the data.   

The robustness of the proposed algorithm is also shown by the 
fact that the accuracy of the extracted rules accuracy does not 
vary with the shape of membership functions used.  In fact, no 
matter which data set the networks are trained with, the 
average accuracy difference between fuzzy systems with 
triangular membership functions and those with bell 
membership functions is less than 0.4%.   
From Table I, we can also compare how each algorithm 
performs in comparison to the trained neural networks.  This is 
an important comparison because if only a small accuracy 
drop exists between the performance of the network and the 
performance of extracted rules, then this small drop is often a 
small price to pay given the traceability and transparency 
gained by using a fuzzy inference system instead of a neural 
network.  In our experiments, we found that the networks 
trained with all the data achieve 97% accuracy.  In 
comparison, when the rules extracted from it using the new 
algorithm, are implemented in a fuzzy inference system, they 
yield an accuracy of 84%, regardless of the type of 
membership functions used.  Therefore, a 13% drop in 

Test Case 

Average 
Network 
Accuracy 

Average 
Network 
Variance 

Average Accuracy of 
the Original 
Algorithm’s Rules 

Average Variance of 
the Original 
Algorithm’s Rules 

Average Accuracy of 
the New Algorithm’s 
Rules 

Average Variance of 
the New Algorithm’s 
Rules 

All_Bell 0.97 0.000049 0.76 0.014 0.84 0.0038 
All_Triangular 0.97 0.000049 0.77 0.015 0.84 0.0039 
Filtered_Bell 0.99 0.00012 0.80 0.0091 0.85 0.0014 
Filtered_Triangular 0.99 0.00012 0.80 0.011 0.86 0.0010 
AVERAGE 0.018 0.000083 0.78 0.12 0.85 0.0025 
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accuracy occurs.  On the other hand, when the rules extracted 
by the existing algorithm [7] are implemented in a fuzzy 
inference system, they achieve an accuracy of 76% and 77% 
(depending on the type of membership function used).  Thus, 
an accuracy drop of 21% and 20% occurs.  This difference 
illustrates the superiority of the new algorithm.   
Similar results are obtained from comparing the accuracy of 
the networks trained with the filtered Iris data set and the rules 
extracted from it by each of the two algorithms.  The average 
accuracy that the networks achieve is 99%, whereas the rules 
extracted from them with the new algorithm achieve an 
accuracy of 85% and 86% (depending on the type of 
membership function used) resulting in an average accuracy 
drop of 13.5%.  In contrast, the rules extracted from the 
networks using the original algorithm [7] yield an accuracy of 
80%.  Once again, the accuracy drop of 19% versus the 13.5% 
demonstrates the pre-eminence of the new algorithm. 
 
5.2 Analysis of Experimental Results 
 
The main goal of a rule-extraction algorithm is to extract as 
few, maximally general rules as possible that provide high 
classification accuracy.  Our algorithm possesses this ability 
because its pruning algorithm ensures that only the most 
critical antecedents are kept in the rule and the rest are pruned.  
This characteristic guarantees that each rule is in its most 
general form and therefore it can be applied to most data 
points.  Thus, the proposed algorithm finds for each class, the 
characteristics that most often distinguish that class from the 
other classes and translates it into a rule.  It is also this ability 
that instigates the robustness of the rules extracted by the new 
algorithm.  Because the algorithm is able to extract only the 
most general rules, a few bad data points that introduce 
nonlinearity among the output classes do not drastically affect 
the performance of the algorithm.  In addition, because the 
algorithm is able to extract only the most dominant rules that 
describe the input-output relationships, the accuracy is not 
affected by the type of the membership function shape used in 
the fuzzy inference system within which the extracted rules 
are implemented.  
Finally, it can be seen that the computational complexity of 
the proposed algorithm is O(n), where n is the number of input 
parameters. This is very low compared to the exponential 
computational complexity that most rule extracting algorithms 
possess, making the new algorithm much more efficient. 

 
VI. CONCLUSION 

 
While artificial neural networks possess the invaluable ability 
to learn input-output relationships from simply processing 
data, they also exhibit black-box behavior, a characteristic 
which often hinders their applicability.    
As early as 1988 [4], researchers have tried to translate the 
knowledge embedded within an artificial neural network into 
comprehensible rules that could be used in an expert or fuzzy 
inference system.  Much of this research has concentrated on 
extracting knowledge from multilayered neural networks that 
can solve complex problems.  However, the solutions yielded 
from such research are often computationally inefficient, 
logically complex, and often impose specific restrictions such 

as required a-priori knowledge.  Such characteristics hinder 
their applicability in industry domains where the problems are 
less complicated and therefore solution simplicity, efficiency, 
and generality take precedence.   
In this paper we have presented an algorithm for extracting 
fuzzy rules from a two-layer feed-forward neural network.  
This algorithm is able to extract general rules that describe the 
input-output relationships with high accuracy.  The rules 
extracted are also robust, as the accuracy of the fuzzy 
inference system in which the rules are implemented does not 
drastically vary with the type of membership function used.  In 
addition, the algorithm exhibits the time complexity of O(n), 
where n is the number of input parameters. This is much lower 
than the exponential complexity that most rule-extracting 
algorithms exhibit.  Finally, the rule-extracting technique 
presented in this paper imposes no preconditions for 
applicability, making the technique appropriate for most 
industry domains seeking a solution to a problem that is not 
complex but much about it is unknown.   
Future work in this direction includes modifying the algorithm 
so that it is applicable to multi-layer neural networks.  This 
can be achieved by increasing the slope of the sigmoid 
function of the hidden layer neurons so that their outputs 
approximate the binary activation function.  Also, instead of 
dividing the data into equally-populated sets, a clustering 
method could be applied to more accurately divide the data 
into fuzzy sets.  Finally, a neuro-fuzzy system could be used to 
implement the rules extracted, so that the membership 
functions used can be fine-tuned, leading to higher overall 
accuracy.     
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