
An Efficient Technique for Extracting Fuzzy Rules
from Neural Networks

Besa Muslimi, Miriam A. M. Capretz, and Jagath Samarabandu

Abstract—Artificial neural networks (ANN) have the ability to
model input-output relationships from processing raw data. This
characteristic makes them invaluable in industry domains where such
knowledge is scarce at best. In the recent decades, in order to
overcome the black-box characteristic of ANNs, researchers have
attempted to extract the knowledge embedded within ANNs in the
form of rules that can be used in inference systems. This paper
presents a new technique that is able to extract a small set of rules
from a two-layer ANN. The extracted rules yield high classification
accuracy when implemented within a fuzzy inference system. The
technique targets industry domains that possess less complex
problems for which no expert knowledge exists and for which a
simpler solution is preferred to a complex one. The proposed
technique is more efficient, simple, and applicable than most of the
previously proposed techniques.

Keywords—fuzzy rule extraction, fuzzy systems, knowledge
acquisition, pattern recognition, artificial neural networks.

I. INTRODUCTION

RTIFICIAL neural networks (ANN) are low-level,
parallel-processing computational structures that have
been proven to be universal approximators [6]; that is,

they have the ability to learn to approximate any input-output
relationship from simply processing raw data. In addition,
neural networks can tolerate incomplete or noisy inputs.
These characteristics make artificial neural networks useful in
domains where the input-output relationship of a system is
unknown or difficult to model with regression techniques.
However, their applicability is often hindered by the “black
box” nature of ANNs, as the reasoning the network uses to
determine an output is impossible to trace.
In 1988, Gallant made one of the first attempts to make neural
networks more comprehensible [4]. This was done by
accompanying each output determined by the network with a
rule that summarized the reasoning behind the output. Other
researchers quickly followed, and many concentrated on
extracting rules that summarize the knowledge embedded
within the architecture and weights of a trained neural

 This work was supported in part by Canada’s National Science and
Engineering Research Council Industrial Postgraduate Scholarship.
 Besa Muslimi is a graduate student in the Department of Electrical and
Computer Engineering at The University of Western Ontario, London, ON,
Canada (bmuslimi@uwo.ca).
 Miriam A. M. Capretz is an associate professor in the Department of
Electrical and Computer Engineering at The University of Western Ontario,
London, ON, Canada (mcapretz@eng.uwo.ca).
 Jagath Samarabandu is an assistant professor in the Department of
Electrical and Computer Engineering at The University of Western Ontario,
London, ON, Canada (jagath@uwo.ca).

network. These rules could then be used to develop an expert
inference system. In fact, some research suggests that the
extracted rule set can sometimes outperform the generalization
of the trained artificial neural network from which the rules
were extracted [1]. During the course of the past couple of
decades, research has spread in several directions: extracting
rules by analyzing individual neurons, extracting rules by
observing overall network behavior, and refining a rule base
through neural networks. With the publication of Buckley et
al.’s proof of equivalence between artificial neural networks
and fuzzy inference systems [2], research also expanded to
include fuzzy rule extraction from trained artificial neural
networks, [5], [8], [12]. A fuzzy logic system is a
mathematical inference model that allows for a problem to be
described in high-level linguistic terms and deals well with
uncertainty. However, fuzzy inference systems can only be
built if the input-output relationship is known or can be
acquired from domain experts. Extracting fuzzy rules from a
trained neural network offers the advantage of being able to
build a fuzzy system, which is transparent to the user, even
when domain expert knowledge is unavailable.
To date, some of the most popular and prominent rule
extraction techniques are Fu’s KT algorithm [3] and Towell
and Shavlik’s M-of-N method [15]. Many other techniques
have also been developed, however most of them have been
developed to extract rules from a multilayered neural network
used for complex problems. As a result, they tend to be very
complex and inefficient, they often require special neural
network architectures or apriori knowledge, and they often
generate a very large number of not-so-comprehensible rules.
Yet there are many industrial domains where the problems are
somewhat simple and no apriori knowledge exists.
Furthermore, there are industrial domains that prefer to use
artificial intelligence systems as verification tools that aid
domain experts in their decisions. For such domains, a set of
concise and general rules that describe the input-output
relationship and that are easily verifiable by a domain expert is
sufficient. Also, in such domains, complexity and
inefficiency are vastly unfavorable.
In this paper, a new method for extracting rules from a two-
layer neural network is introduced, one which is far simpler
and more efficient than the current methods. The technique
can be implemented on the two-layer perceptron and it
extracts a small set of general and concise rules that are able to
accurately describe the input-output relationship. The rule
extraction method proposed in this paper is based on the
method described by Huang and Xing [7] and can extract rules
far more accurately and robustly.
The paper is organized as follows: In section 2 of this paper,
an explanation of the rule extraction problem is given. Section

A

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1231International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

3 contains a summary of the existing rule extraction
approaches. Section 4 introduces the new algorithm and the
details of how it works. Finally, section 5 contains the
experimental results of comparing existing methods with the
new algorithm and an analysis of the results, followed by the
conclusions in section 6.

II. THE RULE EXTRACTION PROBLEM

As stated before, research for extracting rules from a trained
artificial neural network has spread in many directions. The
main classification scheme for such algorithms is in the way
they extract rules. Based on this criteria, an algorithm can be
described as decompositional, pedagogical, or eclectic. In the
decompositional approach, each hidden and output node is
analyzed individually, and a rule is extracted from it [1]. In
the pedagogical approach, the overall behavior of the trained
ANN is observed in order to extract rules that describe the
input-output function [1]. The eclectic approach is a
combination of the first two approaches [1].
The proposed algorithm falls in the category of
decompositional algorithms and in the next section we
examine this class of algorithms as applied to feed-forward
neural networks.

In a feed-forward neural network, the output of each neuron is
calculated as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
×= ∑ j

i
iijj owActA θ (1)

where

xe
xAct α−+

=
1

1)(. (2)

In (1), Aj is the activation of neuron j, wij is the weight on the
link from neuron i to neuron j, oi is the activation of neuron i,

jθ is the bias on the neuron j, and the activation function
Act() is usually modeled as the sigmoidal function, as shown
in (2), where α is a parameter controlling the steepness of the
sigmoidal function, which approximates the step function.
The most important characteristic of the decompositional
approach is that all neurons in the ANN have activations of
approximately 0 or 1. This ensures that the links that are
incoming to a neuron carry a signal that is equal to the size of
the weight or zero. In the hidden layer neurons, binary inputs
allow for this to happen. In the output layer neurons, this is
made possible by increasing the α parameter of the
activation functions (to approximately 10) of the hidden
neurons, to ensure that the neurons approximate boolean
behavior.
Decompositional approaches extract rules from each of the
hidden and output layer neurons by finding the combination of
the incoming weights whose sum exceeds the bias of the
neuron. Rules extracted from the hidden layer neurons and the

output layer neurons are then combined to create rules
describing characteristics of the input-output relationship.

III. RELATED WORKS

In the past two decades, many different decompositional rule-
extracting algorithms have been proposed. Fu proposed the
KT algorithm, where, for each hidden and output neuron, it
searches for a single link with a large enough weight to exceed
the bias of the neuron [3]. If such a link is found, a rule is
written. Next, the algorithm searches for subsets of two links
that exceed the bias, followed by a subset of three, and so on.
When all the neurons have been searched, rules extracted from
the hidden layer neurons are combined with rules extracted
from the output layer neurons to create input-output
relationship rules and rules subsumed by the more general
rules are eliminated.
The search space is reduced by restraining the activation of
every node of the network to the interval [0,1], which allows
for the assumption that negatively weighted links can only
give rise to negated antecedents and positively weighted links
can only give rise to non-negated antecedents [3]. Fu also
constrains the number of antecedents in a rule and uses three
heuristics to further reduce the search space and the number of
extracted rules [3]. However, in spite of all this, the
algorithm is still of exponential complexity [3]. In addition,
imposing a maximum number of antecedents in a rule can
significantly affect the quality of the rule set [1].
Towell and Shavlik present a similar algorithm [15] that is
implemented on a special multilayer network developed by
them [16] called the knowledge-based neural network
(KBNN). The existing knowledge about the domain is first
inserted into the architecture of the network and the network is
trained with the backpropagation algorithm. Then links with
similar weights are combined into clusters and the average of
the cluster’s weight is used as the weight of each link
belonging to that cluster. Clusters with low link weights
(relative to the rest of the clusters) and few members are then
eliminated as they are assumed to have little influence on the
outcome of the network. The weights of the links are then
fixed and the network is retrained with the backpropagation
algorithm to adapt the biases of the network. Finally, a rule is
written for each hidden unit and output unit in the form of

If M of N antecedents are TRUE then C

where each antecedent is associated with a weight and the rule
is associated with a threshold, given by the bias. The Final
step of the algorithm involves simplifying the rules by
removing the weights of the antecedents and the thresholds of
the rules where possible. There are several shortcomings to
the M-of-N algorithm: first of all, it is implemented on a
KBNN as opposed to a standard multilayer perceptron, and it
requires a clustering algorithm. These two requirements do
not allow for the algorithm to be portable across different
ANN architectures. Second, the primary goal of the M-of-N
algorithm is to refine rules contained in the initial rule base.
This limits its use to domains where the input-output
relationship knowledge exists. Also, it does not allow for new
and unexpected knowledge to be discovered. Finally, the

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1232International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

complexity of the M-of-N algorithm is exponential, although
the authors argue that it is approximately cubic [15].
Krishnan et al. provide another technique for extracting rules
from feed-forward neural network [10]. The main idea is to
sort the incoming weights of a neuron in descending order,
then create combinations of weights of all possible sizes and
order the combinations in descending order based on the sum
of the weights in the combination. Their main goal is to
reduce the search space by checking first if the combinations
that yield the highest sum of weights exceed the bias. If these
combinations fail, the subsumed combinations can be pruned
without being checked. Despite the effort however, the
algorithm is still of exponential complexity [10].
While the above algorithms extract crisp rules and only deal
with discrete inputs, other researchers have proposed
algorithms for extracting fuzzy rules or systems that deal with
fuzzy inputs. Hayashi and Imura proposed a fuzzy neural
expert system with automated extraction of fuzzy rules that
can handle fuzzy and crisp inputs [5]. In addition, each
extracted rule is associated with a fuzzy truth value such as
Very True or Possibly True, and each antecedent in a rule is
associated with a fuzzy importance value such as Very
Important or Moderately Important. However the accuracy of
the system is only 75.5% [5].
Kasabov’s REFuNN algorithm [8],[9], applied to the specially
constructed FuNN fuzzy neural network also has the ability to
extract fuzzy weighted rules as well as simple fuzzy rules;
however, the number of rules extracted for a fairly simple
problem such as the Iris classification data [14] is very large.
NEFCLASS (Neuro Fuzzy CLASSification) is a neuro-fuzzy
system for the classification of data that is presented by Nauck
and Kruse in [12], [13]. The goal of the system is to learn
fuzzy rules from the training data patterns as it classifies each
pattern into crisp classes. Although the system performs well
(96.67% accuracy), the rules are never tested on a fuzzy
inference system and the system does not perform any better
than the standard three layer perceptron. In addition, a ceiling
is placed on the maximum number of rules extractable, a
constraint that could seriously hinder the quality of the rule
set.
As mentioned in the introduction, above techniques attempt to
extract rules for complex problems and therefore are complex,
inefficient, and not general enough to be applied across
different domains. Huang and Xing presented a new
technique for extracting rules that can be used for domains
with simpler problems [7]. Their technique consists of several

steps. In the first step, given n-continuous-valued input
parameters Ii, i=1,2,…,n, each input parameter is classified
into two or more equally populated sets. Then each set is
represented with a binary scheme. For example, if each input
parameter is divided into two sets, small and large, the set {Ii
is small} is represented as [1 0], and the set {Ii is large} is
represented as [0 1]. As a result, a problem of n continuous-
valued input parameters is transformed into a problem of 2n
input parameters where each input is binary.
Next, a two layer feed-forward back-propagation neural
network is constructed, with 2n inputs and as many output
nodes as the number of classes in the data. Once the network
is trained, the most dominant rule from each output neuron is
extracted. This is done by determining, for each input Ii, its
binary input with the highest weight and assuming that input
to be 1. Therefore, the antecedents of the extracted rule
include all input parameters, some of which can then be
pruned. The pruning process allows for the rule to be more
general and therefore yield more accurate results. The pruning
algorithm first sorts the input parameters in ascending order of
their maximum weights. Then, the algorithm prunes the
parameters one at a time, starting with the input parameter
with the smallest maximum weight, so long as the neuron
remains activated even when the maximum-weight binary
input of the input parameter is off and the minimum-weight
binary input is on.
The main problem with this rule-extraction technique lies in
the pruning process:
It assumes that how an input parameter affects the activation
of an output neuron depends only on the maximum weight of
the parameter, and not on the minimum weight. This incorrect
assumption causes antecedents that can be pruned to
sometimes escape pruning, making the rules less general, and
consequently diminishing the accuracy of the fuzzy inference
system implementing the extracted rules.

IV. A NEW RULE-EXTRACTING ALGORITHM

In this section we describe the proposed rule extraction
algorithm that can overcome the above disadvantages; We
also show that this algorithm can extract rules that yield much
higher accuracy and robustness.
Fig. 1 shows a simplified neural network with one output node
and six binary inputs, representing the three continuous-valued
input parameters, I1, I2, and I3.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1233International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

Fig. 1 A neural network with 3 input parameters, two Boolean inputs for each input parameter, and one output.

It should be noted that the binary inputs within each input
parameter group are dependent. For example, in Fig. 1, if the
value of parameter I1 is “small” then I11 will be 1 and I12 must
be 0.
To extract the most dominant rule for the output node, the

maximum weight
iimw of each input parameter Ii is

determined:

11mw = 0.6,
22mw =0.5, and

33mw =0.7

Therefore, the extracted rule is:
If I1 is I12 AND I2 is I21 AND I3 is I32 then Output is O.

In order to prune all the antecedents of a rule that do not affect
the activation of the output neuron, for each input parameter Ii,
the absolute difference between the maximum

weight
iimw and the minimum weight

iilw of its binary
inputs is calculated. The input parameters are then sorted in
ascending order of this absolute difference. Finally, the
algorithm prunes each input parameter, starting with the one
with the smallest absolute difference, so long as the neuron
remains activated if its maximum-weight binary input is off
and the minimum-weight binary input is on. Pseudo code for
the pruning algorithm is as follows:

For i = 1, 2, …, n

Find li such that iilw
=min[wij], j = 1,2,3.

 Find ii ilimi wwd −=

Sort Ii in ascending order of d i

Let ∑ =
−=

n

i im BwS
i1

For i = 1, 2, …, n (note that now di are sorted)

Let ii ilim wwSS +−=

 If S<0
Exit

 Else
 Remove antecedent that involves parameter Ii

For the network shown in Fig. 1, the rule antecedents would
be pruned as follows according to the new algorithm:

Find ,
iimw

iilw and di for each input parameter:

11mw = 0.6,
22mw =0.5, and

33mw =0.7

11lw = 0.5,
22lw = 0.1,

33lw = 0.1

d1 = 0.6 – 0.5 = 0.1, d2 = 0.5 – 0.1 = 0.4, d3 = 0.7 -0.1 = 0.6

Sort Ii in ascending order of d i: I1 I2 I3
S = 0.6 + 0.5 + 0.7 – 1.5 = 0.3
For i = 1
 S = 0.3 – 0.6 + 0.5 = 0.2
 0.2>0
 Remove antecedent that involves parameter I1
For i = 2
 S = 0.2 – 0.5 + 0.1 = -0.2
 -0.2<0, Exit

So the rule from the improved pruning algorithm is:
If I2 is I21 AND I3 is I32 then Output is O.

V. EXPERIMENTAL RESULTS & ANALYSIS

5.1 Experimental Results

The new algorithm proposed in this paper targets the problem
of efficiently extracting a small set of general rules that yield

1.5

w32 = 0.1

w31 = 0.7

w22 = 0.5

w21 = 0.1

w12 = 0.5

w11 = 0.6

I11

I12

I21

I22

I31

I32

 O

Bias

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1234International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

high accuracy. In order to demonstrate the accuracy of the
new algorithm, we compare it against existing algorithms
using the Iris classification data set [14]. The data set contains
3 classes (Iris-Virginica, Iris-Versicolor, or Iris-Setosa) where
each class refers to a type of iris plant. There are 150 data
records, 50 for each type of class. The Iris-Setosa class is
linearly separable from the Iris-Versicolor and Iris-Virginica
classes but the latter two are not linearly separable from each
other. The classification problem consists of finding which
class an Iris plant belongs to based on the four continuous-
valued input parameters: sepal length, sepal width, petal
length, and petal width.
For the experiment, each input parameter of the Iris data set
was separated into 3 sets: small, medium, and large. The data
was then converted to binary data.. In order to better measure
the accuracy of each algorithm, testing was automated using a
program developed for this purpose.
For the experiments, two parameters were varied: data used to
train the networks and the shape of the membership functions
of the fuzzy inference systems in which the extracted rules
were implemented. The network training data varied between
all the data points in the Iris data set and only the data points
in the data set that did not introduce a nonlinear separation
between the Iris-Versicolor and the Iris-Virginica classes
(from hereon referred to as the filtered Iris data set). The
shape of the membership functions used in the fuzzy systems
varied between triangular and generalized bell. The variations
of these two parameters created four test cases. In the first test

case (All_Bell) the neural network was trained with all the
data in the Iris data set and the extracted rules were
implemented in a fuzzy inference system with bell
membership functions. In the second test case
(All_Triangular), the network was also trained with all the
data, but the extracted rules were implemented in a fuzzy
system with triangular membership functions. Likewise, for
the third and fourth test cases, the networks were trained with
the filtered data set, and in the third test case (Filtered_Bell),
the extracted rules were implemented on a fuzzy system with
bell membership functions while in the fourth test case
(Filtered_Triangular) they were implemented in a fuzzy
system with triangular membership functions.
One thousand tests were conducted for each test case, totaling
to four thousand tests, for which four thousand two-layer
feedforward networks were trained using the back-propagation
algorithm. Of these, the networks that performed poorly
(achieved a mean square error measurement of greater than
0.05) were removed. This is because it is obvious that
extracting rules from networks with poor performance will
yield poor rules and in practice such networks would not be
used to extract rules. Once such networks were removed from
the experimental data, each test case comprised of anywhere
between 775 tests and 835 tests. The average accuracy results
of each test case are shown in Table I, together with the
average variance. The average classification accuracy and
variance of the network is also shown in Table I.

TABLE I

EXPERIMENTAL RESULTS FOR THE IRIS DATA SET

As it can be seen from Table I, the new algorithm performs
much better than the original algorithm. The average accuracy
of the new algorithm is 85%, as shown in the last row of Table
I. The average accuracy of the original algorithm is 78%. In
addition, the variance in accuracy is lower for the new
algorithm by a factor of 5: The average variance in accuracy
of the rules extracted by the original algorithm [7] is 0.012,
while the average variance accuracy of the rules extracted by
the new algorithm is 0.0025. The lower variance of the new
algorithm illustrate that the new algorithm is not only more
accurate, but also more reliable in its accuracy.
The fact that the new algorithm performs with almost the same
accuracy whether the data is filtered or not, shows its
robustness: the algorithm is capable of learning the most
general and accurate rules even when bad data points are
present in the training set. In practice, this has a great impact
on the applicability of the algorithm: Most industry domains
are not aware which data points introduce the nonlinearity in
the data.

The robustness of the proposed algorithm is also shown by the
fact that the accuracy of the extracted rules accuracy does not
vary with the shape of membership functions used. In fact, no
matter which data set the networks are trained with, the
average accuracy difference between fuzzy systems with
triangular membership functions and those with bell
membership functions is less than 0.4%.
From Table I, we can also compare how each algorithm
performs in comparison to the trained neural networks. This is
an important comparison because if only a small accuracy
drop exists between the performance of the network and the
performance of extracted rules, then this small drop is often a
small price to pay given the traceability and transparency
gained by using a fuzzy inference system instead of a neural
network. In our experiments, we found that the networks
trained with all the data achieve 97% accuracy. In
comparison, when the rules extracted from it using the new
algorithm, are implemented in a fuzzy inference system, they
yield an accuracy of 84%, regardless of the type of
membership functions used. Therefore, a 13% drop in

Test Case

Average
Network
Accuracy

Average
Network
Variance

Average Accuracy of
the Original
Algorithm’s Rules

Average Variance of
the Original
Algorithm’s Rules

Average Accuracy of
the New Algorithm’s
Rules

Average Variance of
the New Algorithm’s
Rules

All_Bell 0.97 0.000049 0.76 0.014 0.84 0.0038
All_Triangular 0.97 0.000049 0.77 0.015 0.84 0.0039
Filtered_Bell 0.99 0.00012 0.80 0.0091 0.85 0.0014
Filtered_Triangular 0.99 0.00012 0.80 0.011 0.86 0.0010
AVERAGE 0.018 0.000083 0.78 0.12 0.85 0.0025

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1235International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

accuracy occurs. On the other hand, when the rules extracted
by the existing algorithm [7] are implemented in a fuzzy
inference system, they achieve an accuracy of 76% and 77%
(depending on the type of membership function used). Thus,
an accuracy drop of 21% and 20% occurs. This difference
illustrates the superiority of the new algorithm.
Similar results are obtained from comparing the accuracy of
the networks trained with the filtered Iris data set and the rules
extracted from it by each of the two algorithms. The average
accuracy that the networks achieve is 99%, whereas the rules
extracted from them with the new algorithm achieve an
accuracy of 85% and 86% (depending on the type of
membership function used) resulting in an average accuracy
drop of 13.5%. In contrast, the rules extracted from the
networks using the original algorithm [7] yield an accuracy of
80%. Once again, the accuracy drop of 19% versus the 13.5%
demonstrates the pre-eminence of the new algorithm.

5.2 Analysis of Experimental Results

The main goal of a rule-extraction algorithm is to extract as
few, maximally general rules as possible that provide high
classification accuracy. Our algorithm possesses this ability
because its pruning algorithm ensures that only the most
critical antecedents are kept in the rule and the rest are pruned.
This characteristic guarantees that each rule is in its most
general form and therefore it can be applied to most data
points. Thus, the proposed algorithm finds for each class, the
characteristics that most often distinguish that class from the
other classes and translates it into a rule. It is also this ability
that instigates the robustness of the rules extracted by the new
algorithm. Because the algorithm is able to extract only the
most general rules, a few bad data points that introduce
nonlinearity among the output classes do not drastically affect
the performance of the algorithm. In addition, because the
algorithm is able to extract only the most dominant rules that
describe the input-output relationships, the accuracy is not
affected by the type of the membership function shape used in
the fuzzy inference system within which the extracted rules
are implemented.
Finally, it can be seen that the computational complexity of
the proposed algorithm is O(n), where n is the number of input
parameters. This is very low compared to the exponential
computational complexity that most rule extracting algorithms
possess, making the new algorithm much more efficient.

VI. CONCLUSION

While artificial neural networks possess the invaluable ability
to learn input-output relationships from simply processing
data, they also exhibit black-box behavior, a characteristic
which often hinders their applicability.
As early as 1988 [4], researchers have tried to translate the
knowledge embedded within an artificial neural network into
comprehensible rules that could be used in an expert or fuzzy
inference system. Much of this research has concentrated on
extracting knowledge from multilayered neural networks that
can solve complex problems. However, the solutions yielded
from such research are often computationally inefficient,
logically complex, and often impose specific restrictions such

as required a-priori knowledge. Such characteristics hinder
their applicability in industry domains where the problems are
less complicated and therefore solution simplicity, efficiency,
and generality take precedence.
In this paper we have presented an algorithm for extracting
fuzzy rules from a two-layer feed-forward neural network.
This algorithm is able to extract general rules that describe the
input-output relationships with high accuracy. The rules
extracted are also robust, as the accuracy of the fuzzy
inference system in which the rules are implemented does not
drastically vary with the type of membership function used. In
addition, the algorithm exhibits the time complexity of O(n),
where n is the number of input parameters. This is much lower
than the exponential complexity that most rule-extracting
algorithms exhibit. Finally, the rule-extracting technique
presented in this paper imposes no preconditions for
applicability, making the technique appropriate for most
industry domains seeking a solution to a problem that is not
complex but much about it is unknown.
Future work in this direction includes modifying the algorithm
so that it is applicable to multi-layer neural networks. This
can be achieved by increasing the slope of the sigmoid
function of the hidden layer neurons so that their outputs
approximate the binary activation function. Also, instead of
dividing the data into equally-populated sets, a clustering
method could be applied to more accurately divide the data
into fuzzy sets. Finally, a neuro-fuzzy system could be used to
implement the rules extracted, so that the membership
functions used can be fine-tuned, leading to higher overall
accuracy.

REFERENCES
[1] Andrews, R. Diederich, J., Tickle, A. Survey and Critique of

Techniques for Extracting Rules from Trained Artificial Neural
Networks. Knowledge-Based Systems, Volume 8, Number 6, pp. 373-
389. December 1995.

[2] Buckley, J.J., Hayashi, Y., Czogala, E. On the Equivalence of Neural
Nets and Fuzzy Expert Systems. Fuzzy Sets Systems, vol. 53, no. 2, pp.
129-134, 1993.

[3] Fu, L. Rule Generation from Neural Networks. IEEE Transactions on
Systems, Man, and Cybernetics, Volume 24, Number 8, pp. 1114-1124.
August 1994.

[4] Gallant, S. Connectionist Expert Systems. Communication of ACM,
Volume 31, pp. 152-169, 1988.

[5] Hayashi, Y. and A. Imura. Fuzzy Neural Expert System with
Automated Extraction of Fuzzy If-Then Rules from a Trained Neural
Network. Proceedings of First International Symposium on Uncertainty
Modeling and Analysis, pp. 489-494, 1990.

[6] Homik, K., Stinchcombe, M., White, H. Multilayer feedforward
networks are universal approximators. Neural Networks Archive,
Volume 2, Number 5, pp.359-366, 1989.

[7] Huang, S. and H. Xing. Extracting intelligible and concise fuzzy rules
from neural networks. Fuzzy Sets and Systems, Volume 132, pp. 233-
243. 2001.

[8] Kasabov, N. Learning Fuzzy Rules and Approximate Reasoning in
Fuzzy Neural Networks and Hybrid Systems. Fuzzy Sets and Systems,
Volume 82, pp. 135-149. 1996.

[9] Kasabov, N. Learning Fuzzy Rules through Neural Networks.
Proceedings of the 1st New Zealand International Two-Stream
Conference on Artificial Neural Networks and Expert Systems, 1993.

[10] Krishnan, R., Sivakumar, G., Bhattacharya, P. A Search Technique for
Rule Extraction from Trained Neural Networks. Patterns Recognition
Letters, Volume 20, pp. 273-280. 1999.

[11] Mitra, S. and Y. Hayashi. Neuro-Fuzzy Rule Generation: Survey in Soft
Computing Framework. IEEE Transactions on Neural Networks,
Volume 11, Number 3, pp.748-768. May 2000.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1236International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

[12] Nauck, D. and R. Kruse. NEFCLASS – A Neuro-Fuzzy Approach for
the Classification of Data. Proceedings of the 1995 ACM Symposium on
Applied Computing, pp. 461-465, 1995.

[13] Nauck, D., Nauck, U., Kruse, R. Generating Classification Rules with
the Neuro-Fuzzy System NEFCLASS. Proceedings of the 1996 North
American Fuzzy Information Processing Society Conference, pp. 466-
470, 1996.

[14] Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI
Repository of Machine Learning Databases. Irvine, CA: University of
California, Department of Information and Computer Science.
http://www.ics.uci.edu/~mlearn/MLRepository.html

[15] Towell, G. and J. Shavlik. Extracting Refined Rules from Knowledge-
Based Neural Networks. Machine Learning, Volume 13, pp. 71-101,
1993.

[16] Towell, G., Shavlik, J., Noordewier, M.O. Refinement of Approximately
Correct Domain Theories by Knowledge-Based Neural Networks.
Proceedings of the Eigth National Conference on Artificial Intelligence,
pp.861-866, 1990.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:4, 2008

1237International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
57

91
.p

df

