

Abstract—The aim of this paper is to rank the impact of Object

Oriented(OO) metrics in fault prediction modeling using Artificial
Neural Networks(ANNs). Past studies on empirical validation of
object oriented metrics as fault predictors using ANNs have focused
on the predictive quality of neural networks versus standard
statistical techniques. In this empirical study we turn our attention to
the capability of ANNs in ranking the impact of these explanatory
metrics on fault proneness. In ANNs data analysis approach, there is
no clear method of ranking the impact of individual metrics. Five
ANN based techniques are studied which rank object oriented
metrics in predicting fault proneness of classes. These techniques are
i) overall connection weights method ii) Garson’s method iii) The
partial derivatives methods iv) The Input Perturb method v) the
classical stepwise methods. We develop and evaluate different
prediction models based on the ranking of the metrics by the
individual techniques. The models based on overall connection
weights and partial derivatives methods have been found to be most
accurate.

Keywords—Artificial Neural Networks (ANNS),
Backpropagation, Fault Prediction Modeling.

I. INTRODUCTION
BJECT oriented (OO) paradigm provides viable solution
to the problems existing in the software industry and is

expected to result in development of software which is less
fault prone, reusable, maintainable, easily modifiable and less
brittle. The advent of OO paradigm requires new metrics for
quantifying the software development process as traditional
product metrics are inadequate to measure reusability,
inheritance and polymorphism. Several OO metrics have been
proposed in literature [1] and there is high research activity
and interest in validating the usefulness of the proposed
metrics in quality, maintainability and effort modeling.
[2,3].Popular techniques for data analysis in these studies are
multiple regression, logistic regression and Multivariate

Manuscript received April 20, 2006
Kamaldeep.Kaur, is with Institute of Information Technology and

Management, Affiliated to GGS Indrapratha Delhi, India (corresponding
author; phone: 91-011-55388484; e-mail: kdkaur99@yahoo.co.in).

Dr. Arvinder Kaur, is with GGS Indraprastha University , Delhi, India (e-
mail: arvinderkaurtakkar@yahoo.com.)

Ruchika Malhotra is with Indira Gandhi Institute of Technology , GGS
Indraprastha University, Delhi, India (e-mail:
ruchikamalhotra2004@yahoo.com)

Adaptive Regression Splines(MARS). Machine learning
techniques like decision trees and neural networks are also
common. In this paper we use multi layer perceptrons neural
networks trained with backpropagation algorithm for data
analysis in fault prediction modeling of java projects.

Neural networks have a close analogy to non-parametric
statistical inference and are very powerful in modeling non
linear relationships. In contrast to some statistical techniques
they do not require to specify the relationships between inputs
and outputs a priori. ANNs tend to be useful in quality
modeling because, the number of inputs(object oriented
metrics) are fairly large, many of the metrics are relevant but
predictive information lies in a lower dimensional subspace. A
quality prediction neural model should contain only the most
significant explanatory metrics which have an impact above a
fixed threshold. This allows the size of the neural network to
be reduced and improves generalization. However, the
determination of significant input metrics is the most difficult
and criticized aspect of ANN modeling. With neural networks,
there is no clear method of ranking input metrics. We study
here some alternative rational ways to rank the impact of
individual OO metrics on fault proneness using neural
networks. We use some basic methods for analyzing the
weights or inputs of neural networks, although some advanced
methods like Fuzzy logic and Bayesian analysis can be
applied for neural network weight interpretation.

This paper is organized as follows. Section II presents
related work in this area. Section III presents the research
background. Section IV contains the neural network modeling
method and architecture. In section V we present five
approaches for ranking the importance of individual OO
metrics. In section VI we develop and evaluate neural models
based on the obtained rankings and discuss the results
obtained.

II. RELATED WORK
We performed a review of literature on use of ANNs for

predicting quality models using metrics both in procedural and
object oriented paradigm. Khoshgoftarr et al. used one hidden
layer MLP with backpropagation training algorithm as a data
analysis tool for software quality modeling of a large
telecommunication system[4]. Their quality model was based
on call graph metrics and control flow graph metrics as
predictor variables to predict the group membership of a
software module. The modules were classified as fault prone

Alternative Methods to Rank the Impact of
Object Oriented Metrics in Fault Prediction

Modeling using Neural Networks
 Kamaldeep Kaur, Arvinder Kaur, and Ruchika Malhotra

O

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2460International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

and not fault prone. Thwin and Quah have used Ward and
Generalized Regression Neural Networks(GRNN) for
predicting software development faults[5] and software
readiness[6]. There models are based on OO metrics[5,6] as
predictor variables and number of faults as response variables.
More recently, Gyimothy et al. [7] have used a neural network
developed at their university to predict the fault proneness of
classes in an open source software. Except for [6] none the
above studies have considered the ranking of impact of
individual metrics on fault proneness when conducting a data
analysis using neural networks. In [6] analysis of weights
method is followed for finding the impact of individual
metrics but the algorithmic details are not divulged . The
general approach in these papers [4,5] is to identify
orthogonal metrics by Principal Component Analysis for
dimensionality reduction but impact of individual metrics
using neural technique is not studied. The input metrics in our
study are decorrelated and we look for other variable
selection techniques for ANN modeling.

III. RESEARCH BACKGROUND
A. Metrics Studied
We choose suite of Chidamber and Kemerer metrics[1] in

our study as independent variables.
WMC (Weighted Methods per Class). The WMC is the

number of methods defined in each class, weighted by their
complexity. More precisely, WMC is defined as being the
number of all member functions and operators defined in each
class.

DIT (Depth of Inheritance Tree).The DIT is defined as the
length of the longest path from the class to the root in
inheritance hierarchy.

RFC (Response For a Class).This the response for a class
coupling metric. The response set of a class consists of the set
M of the methods of the class and the set of methods invoked
directly by methods in M (i.e., the set of methods that can
potentially be executed in response to a message being
received by that class). RFC is the number of methods in the
response set of the class.

NOC (Number Of Children). The NOC is the number of
direct descendants for each class.

CBO (Coupling Between Object classes). A class is
coupled to another one if it uses its member functions and/or
instance variables. CBO provides the number of classes to
which a given class is coupled.

LCOM(Lack of Cohesion on Methods).The number of pairs
of member functions without shared instance variables, minus
the number of pairs of member functions with shared instance
variables. However, the metric is set to zero whenever this
subtraction is negative.

LOC (Lines Of Code). The LOC of a class is the number of
all nonempty, non comment lines of the body of the class and
all of its methods.

B. Data Collected
To analyze metrics chosen for this work, their values are

computed for twelve different systems. These systems are
developed by under graduate engineering students and

Masters of Computer Application students at School of
Information Technology, of our University. The systems were
developed using Java programming language over duration of
four months. The aim was to teach students system analysis
and design techniques as part of their course curriculum. All
students had experience with Java language and thus they had
basic knowledge necessary for this study.

The students were divided into 12 teams of four students
each. Each team developed a medium-sized system such as
flight reservation, chat server, proxy server etc. The
development process used waterfall model. Documents were
produced at each phase of software development. Faults were
reported to the developers. A separate group of students
having prior knowledge of system testing under the guidance
of senior faculty were assigned the task of testing systems
according to test plans.
The following relevant data was collected:
1. The design and source code of the java programs
2. The faulty data found by the testing team.

The 12 systems under study consist of 136 classes (39
KLOC) out of which 85 are system classes and 51 standard
library classes available in java language. These classes
contain functions to manipulate files, strings, lists, hash tables,
frames, windows, menus, threads, socket connection etc.

Table I shows the descriptive statistics of the data for 85

system classes. The quantities of interest are mean, median,
Standard Deviation, Inter-quartile range and number of classes
in which a given metric is greater than zero.

TABLE I
DESCRIPTIVE STATISTICS FOR OUR DATA OF 85 SYSTEM CLASSES

Metric Mean Median Standard
Deviation

IQR N>0

DIT 0.353 0 0.612 1 25
NOC 0.282 0 0.959 0 10
LOC 114.423 64 151.658 85 85
CBO 1.059 1 1.313 1 54
WMC 5.964 3 6.889 7 80
RFC 13.4 7 16.357 17 76
LCOM 25.564 0 65.662 13.25 35

IV. NEURAL NETWORK MODELING
A. Architecture Selection
The multi-layer feed-forward network was used in this

experiment. The independent variables in this study are the
seven object oriented metrics from 85 system classes, which
are inputs to the neural network and dependent variable is the
fault proneness of a class which is the network output.
Outliers found to be influential were removed from the data
set. The neural network was trained using backpropagation
algorithm. This algorithm generally works best when the
network inputs and targets are normalized all the input metrics
and actual outputs were scaled with min-max normalization
technique. The network architecture consisted of a single

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2461International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

hidden layer. The number of hidden neurons was empirically
determined by partitioning the data into training, validation
and test subsets in the ratio 3:1:1. A network with two hidden
neurons gave the best prediction results. Mu was set equal to
0.001. The training algorithm used was backpropagation with
Bayesian Regularization, which has already been found the
best for software engineering applications in existing studies
[8].

TABLE II

NEURAL NETWORK ARCHITECTURE

Hidden Layers 1
Hidden neurons 2
Activation function
hidden layer

Tansig

Output neurons 1
Activation function
output neuron

Purelin

Mu 0.005

After the architecture ha been selected the network is trained
with data from all 85 system classes to rank the impact of
metrics.

B. Metric Ranking Methods
1. Univariate Analysis
In this approach we used only one metric in the neural

network at a time and created seven models to find out the
metrics that are most important in predicting fault proneness.
The following table shows the results of correlation of
network outputs with actual fault proneness for individual
metrics.

Table IV gives the sum squared training error, sum squared
weights and effective number of parameters for individual
metrics by training the network with a Bayesian
Regularization Algorithm.

TABLE IV
UNIVARIATE MODELING WITH INDIVIDUAL METRICS AS PREDICTORS

Metric Sum
Squared
Error

Sum squared
weights

Effective
number of
parameters

DIT 20.152 0.8401 1.813
NOC 20.885 0.183 0.985
LOC 13.016 19.209 3.909
CBO 17.911 2.577 2.408
WMC 15.082 2.817 2.579
RFC 10.159 20.394 3.687
LCOM 16.038 9.336 3.107

The metrics that have high correctness in predicting fault

proneness result in lower sum squared error and high sum
squared weights.

The univariate analysis method considers the impact of
metrics when they are isolated from other metrics. Although
univariate analysis provides some insight regarding the
usefulness of individual metrics it does not capture the
interaction between various metrics. Rest of the methods we
consider are multivariate methods wherein all metrics are
input to the neural network.

2. Over all Connection Weights based Wrapper Method
This method is also called ANNIGMA[9]. This method

calculates the product of raw input-hidden and output-hidden
connection weights between each input neuron and output
neuron and sums the products across all hidden neurons. The
metric having the lowest overall connection weight is
considered to be the least significant and is eliminated from
the neural network. The order of metric elimination is
considered to be the ranking of metrics from lowest to highest.
The confusion matrix is analyzed after each elimination. If the
sensitivity and specificity does not improve further the
algorithm can be stopped for model prediction.

3. Garson’s Method
The method for ranking the relative importance of input

variables was first proposed by Garson[10]. This method
essentially involves partitioning the hidden output connection
weights of each hidden neurons into components associated
with each input to the neural network. As contrast to overall
connection weights method this method uses the absolute
values of connection weights.

i) For each hidden neuron i , multiply the absolute

value of the hidden –output layer connection
weight by the absolute value of the hidden input
layer connection weight. Do this for each input
metric j.

ii) For each hidden neuron , divide each Pij
obtained in step i) by the sum of all Pij s to
obtain Qijs

iii) For each input obtain the sum Sj by summing
the Qijs

TABLE III
CORRECTNESS OF INDIVIDUAL METRICS IN

PREDICTING FAULT PRONENESS

Metric r p-value Correctne
ss

DIT 0.1974 0.0701 All
classes
non faulty

NOC 0.1382 0.0207 All
classes
non faulty

LOC 0.6142 0.0000 67.57%
CBO 0.3735 0.0004 40.5%
WMC 0.5275 0.0000 54.05%
RFC 0.7169 0.0000 78.37%
LCOM 0.4829 0.0000 45.9%

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2462International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

iv) Divide the sum Sj by the sum of Sj for all input
variables . This gives the relative importance or
contribution of each of the metrics.

CONTRIBUTION FACTOR OF INPUT METRIC

VARIABLES BY GARSON'S ANALYSIS OF WEIGHTS
METHOD

DIT
NOC

LOC
CBO WMC

RFC

LCOM1

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

INPUT METRICS

R
EL

AT
IV

E
C

O
N

TR
IB

U
TI

O
N

 F
AC

TO
R

Series1 0.116 0.06 0.179 0.09 0.085 0.293 0.176

DIT NOC LOC CBO WMC RFC LCO

Fig. 1 Metric Ranking by Garson’s Algorithm

4. Partial Derivative Method
This is also a neural network analysis technique given by

Ruck [11]. In this technique the partial derivative of the
network output with respect to each of the input metric is
calculated. The sum squared of each of the partial derivatives
is obtained. The metrics that have large positive partial
derivative values at a large number of exemplar points
derivative value is considered to be the one that influences
fault proneness the most. The partial derivative of the neural
network output yi with respect to input xi is given by

 ∑
=

−+=
∂
∂ h

hihhho
i

n

hi
wIIw

x
y

1

11 *)(*)(* (1)

Ih is the response of hth neuron in the hidden layer , who

is the connection weight between hth hidden neuron and output
neuron, whi the connection weight between ith input and hth

hidden neuron
(The above equation is valid only when there is a single

hidden layer and the hidden layer activation function is
hyperbolic tangent and output layer activation function is
purely linear.) The partial derivative is obtained at all the 85
exemplars for each of the seven inputs and scatter plots are
drawn to observer the influence of input variable on output.
The sum of the squares of partial derivatives of input variables
gives us the impact of each input variable.

Partial derivative with respect to loc

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 200 400 600 800

loc

df
/d

lo
c

Partial derivative w ith respect to
rfc

0

1

2

0 50 100

rfc

df
/d

ro
c

Partial derivative with respect to
lcom1

-0.2
0

0.2
0.4
0.6
0.8

1

0 100 200 300 400

lcom1

df
/d

lc
om

1

Partial derivative with respect to wmc

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40

wmc

df
/d

w
m

c

Partial Derivative w ith respect to cbo

-1

-0.5

0

0.5

1

1.5

0 5 10

Partial Derivative
w ith respect to
cbo

Partial derivative w ith respect to dit

-0.4

-0.3

-0.2

-0.1

0
0 1 2 3 4

dit

df
/d

it

Partial Derivative with respect to noc

-0.8
-0.6
-0.4

-0.2
0

0.2

0 2 4 6 8

noc

df
/d

no
c

Fig. 2 Scatter Plots of Partial derivative of Neural Network response

with respect to each of the explanatory OO metrics.

From the scatter plots for partial derivatives of each of the
following metrics the following observations can be made.

i) The partial derivative of network output with
respect to DIT and NOC is negative.

ii) The partial derivative of network output with
respect to LOC, RFC, WMC and LCOM has
positive values.

iii) The partial derivative of network output with
respect to CBO does not have a precise positive
or negative direction and cannot explain the
output

5. Perturb Method
This method is also called sensitivity analysis in some

research literature. It is basically a method for extracting cause
and effect relationship between inputs (metrics in our case)
and outputs (fault proneness).The method involves adding
white noise or dither to one of the input metrics at a time
while keeping all other inputs untouched. The network
learning is disabled during this operation such that the
network weights are not affected. The following table shows
the raw sensitivity for different percentages of dither. We
consider 50% perturbation values for ranking.

TABLE V
RAW SENSITIVITY OF INPUT METRICS TO WHITE NOISE

Dither
Percentage
Metric

0.1 0.2 0.3 0.4 0.5

DIT 0.102 0.187 0.259 0.319 0.372
NOC 0.148 0.313 0.492 0.685 0.882
LOC 0.772 0.301 0.702 0.034 0.325
CBO 1.593 2.912 3.862 4.795 5.677
WMC 1.818 3.533 4.447 6.113 8.143
RFC 5.349 10.443 15.349 18.453 20.724
LCOM 0.781 1.623 2.336 2.858 3.269

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2463International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

6. Classical Stepwise Methods
We followed two classical stepwise methods:

a) Stepwise forward addition method
In the first step seven models are generated as in univariate

analysis each using only one of the available metrics. Then six
models are generated, combining the metric that resulted in
smallest error (for a single input metric) with each of the
remaining metrics. This procedure is repeated until all the
metrics are added to the model. The order of integration of the
metrics is their ranking.

b) Stepwise backward elimination
Seven models are generated using only six of the available

metrics. The seventh missed out metric for which the resulting
models gave the largest error, is the most important. Then six
models are generated with five metrics, eliminating the most
significant metric plus one of the six remaining metrics and so
on. The order of metric elimination is their ranking.

V. RESULTS
A. Ranking of the Metrics According to the Methods

Employed

TABLE VI
RANKING OF OO METRICS BY THE FIVE METHODS

Method
Metric

M1 M2 M3 M4 M5(a) M5(b)

DIT 7 4 7 7 5 7
NOC 6 7 6 6 3 6
LOC 2 2 2 5 2 3
CBO 5 5 5 3 7 2
WMC 3 6 3 2 4 4
RFC 1 1 1 1 1 1
LCOM 4 3 4 4 6 5

M1 : Overall Connection weights based wrapper approach
M2:Garson’s Method
M3: Partial Derivatives Method
M4:Perturb Method
M5(a): Stepwise forward addition
M5(b): Stepwise backward elimination

B. Model Prediction and Evaluation
We performed a 9 cross validation of the proposed neural

network model. The 85 data exemplars were randomly split
into 9 partitions (five partitions of 9 data points and four
partitions of 10 data points).The classification results for the
full model and for each of the five methods are given are
given in Tables VII-XII. Table XIII gives sensitivity,
specificity, proportion correct, true positive rate and J
coefficient [13].

TABLE VII
CLASSIFICATION RESULTS BASED ON FULL MODEL

Predicted
Actual Low Risk High Risk

Low Risk 41 7
High Risk 11 26

TABLE VIII
CLASSIFICATION RESULTS BASED ON OVERALL CONNECTION WEIGHTS

AND PARTIAL DERIVATIVES METHODS

Predicted
Actual Low Risk High Risk

Low Risk 44 4
High Risk 5 32

TABLE IX
CLASSIFICATION RESULTS BASED ON GARSON'S METHOD

Predicted
Actual Low Risk High Risk

Low Risk 39 9
High Risk 7 30

TABLE X
CLASSIFICATION RESULTS BASED ON PERTURB METHOD

Predicted
Actual Low Risk High Risk

Low Risk 34 14
High Risk 6 31

TABLE XI
CLASSIFICATION RESULTS BASED ON STEPWISE FORWARD

ADDITION

Predicted
Actual Low Risk High Risk

Low Risk 37 11
High Risk 6 31

TABLE XII
CLASSIFICATION RESULTS BASED ON STEPWISE BACKWARD

ELIMINATION

Predicted
Actual Low Risk High Risk

Low Risk 39 9
High Risk 5 32

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2464International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

TABLE XIII
ACCURACY OF PREDICTION MODELS

M
et

ho
d

M
et

ric
s

Se
le

ct
ed

Se
ns

iti
vi

ty

Sp
ec

ifi
ci

ty

Pr
op

or
tio

n
C

or
re

ct

Tr
ue

po
si

tiv
e

R
at

e J
C

oe
ff

ic
ie

nt

M1
&
M3

RFC, LOC
,LCOM,
WMC 86.40% 91.60% 89.40% 88.80% 0.78

M2
RFC , LOC,
LCOM1 81.08% 81.25% 81.17% 76.90% 0.62

M4
RFC, WMC,
CBO 83.78% 70.80% 76.47% 68.88% 0.55

M5
(a)

RFC, LOC
,NOC 89.19% 77.08% 82.35% 75% 0.66

M5
(b)

RFC,CBO,LO
C,WMC 86.40% 81.25% 83.5% 78.05% 0.67

VI. CONCLUSION
The partial derivatives method and overall connection

weights based wrapper approach give the best results. Both
methods are found to be stable. These methods reduce the size
and number of neural networks to be built and trained. The
perturb method gives a low ranking to LOC which is an
important metric. Stepwise methods give poor results as they
select metrics found to be insignificant in univariate analysis ,
like NOC . Four methods identify RFC and LOC as the most
significant metrics i.e., highly related to fault proneness. DIT
and NOC receive a low rank from most of the five methods.
Thus, ANNs can be used to rank the most significant metrics
and build accurate prediction models based on subset of object
oriented metrics.

REFERENCES
[1] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Transactions on Software Engineering, vol. 20,
pp 476-493,1994

[2] V.R. Basili, et al,”A Validation of Object-Oriented Design Metrics as
Quality Indicators,” IEEE Transactions on Software Engineering, vol.
22, pp 751-761,1996

[3] L.C. Briand , Jurgen Wust, “Modeling Development Effort in Object
Oriented Systems using Design Properties,” IEEE Transactions on
Software Engineering, vol. 27, no. 11, 2001

[4] T.M. Khoshgoftaar, E.B.Allen, J.P. Hudephol and S.J. Aud,” E.B.Allen,
J.P. Hudephol and S.J. Aud,” ,” Application of neural networks to
quality modeling of a very large telecommunication system”, IEEE
Transactions on Neural Networks, vol.8,pp. 902-909,1997

[5] M. M. T. Thwin and T.-S. Quah,, “Application of Neural Networks for
predicting Software Development faults using Object Oriented Design
Metrics”, Proceedings of the 9th International Conference on Neural
Information Processing, November 2002, pp. 2312 – 2316.

[6] M. M. T. Thwin and T.-S. Quah,,, “Prediction of Software Readiness
using Neural Networks,” ICITA2002, ISBN:1-86467-114-9

[7] Tibor Gyimothy, Rudolf Fernec, and Istvan Siket , ” Empirical Validaion
of Object –Oriented Metrics on Open Source Software for Fault
Prediction” , IEEE Transactions on Software Engineering, vol. 31, no.
10, October 2005

[8] K.K. Aggarwal, Y. Singh. P. Chandra,M.Puri, “Evaluation of various
training Algorithms for Sofware Engineering Applications,” ACM
SIGSOFT Software Engineering Notes ,vol 30, no.4 July 2005.

[9] Dietrich Schusche, Chun Nan Hsu, Hung-Ju Huang , “A weight
analysis based wrapper approach to Neural Nets feature subset
selection,” IEEE Transactions on Systems, Man and Cybernetics,
vol.32,pp. 207-21,2002

[10] G.D. Garson, “Interpreting Neural Network Connection Weights,” AI
Expert 6, pp. 47–51, 1991.

[11] D.W. Ruck, S.K Rogers, M. Kabrisky, “Feature Selection using Multi
Layer Perceptrons,” in Journal of Neural Network Computing, vol 2, no
. 2 , pp. 40-48 ,1990.

[12] S. Haykins, “A Comprehensive Foundation on Neural Networks ,”
Prentice Hall, 1999

[13] Khaled El Emam, “A Methodology for Validating Software Product
Metrics,” National Research Council Canada, Institute for Information
Technology, ERB-1076.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:7, 2008

2465International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

40
3.

pd
f

