
 

 

  
Abstract—The aim of this paper is to rank the impact of Object 

Oriented(OO) metrics in fault prediction modeling using Artificial 
Neural Networks(ANNs). Past studies on   empirical validation of 
object oriented metrics as fault predictors using ANNs have focused  
on the predictive quality of neural networks versus standard 
statistical techniques. In this empirical study we turn our attention to 
the  capability  of ANNs in ranking the impact of these explanatory 
metrics on fault proneness. In ANNs  data analysis approach, there is 
no clear method of ranking the impact of individual metrics. Five   
ANN based techniques are studied which rank object oriented 
metrics in predicting fault proneness of classes. These techniques are 
i) overall connection weights method ii) Garson’s method iii) The 
partial derivatives methods iv) The Input Perturb method v) the 
classical stepwise methods.  We develop and evaluate different 
prediction models   based on the ranking of the metrics by the 
individual techniques. The models based on overall connection 
weights and partial derivatives methods have been found to be most 
accurate. 
 

Keywords—Artificial Neural Networks (ANNS), 
Backpropagation,  Fault Prediction Modeling. 

I. INTRODUCTION 
BJECT oriented (OO) paradigm provides viable solution 
to the problems existing in the software industry and is 

expected to result in development of software which is less 
fault prone, reusable, maintainable, easily modifiable and less 
brittle. The advent of OO paradigm requires new metrics for 
quantifying the software development process as traditional 
product metrics are inadequate to measure reusability, 
inheritance and polymorphism. Several OO metrics have been 
proposed in literature [1] and there is high research activity 
and interest  in validating the usefulness of  the proposed 
metrics in quality, maintainability  and effort modeling. 
[2,3].Popular techniques for data analysis in these studies are 
multiple regression, logistic regression and  Multivariate 
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Adaptive Regression Splines(MARS).  Machine learning 
techniques like decision trees and neural networks are also 
common. In this paper we use multi layer perceptrons  neural 
networks trained with backpropagation algorithm for data 
analysis in fault prediction modeling of java projects. 

Neural networks have a close analogy to non-parametric 
statistical inference and  are very powerful in modeling non 
linear relationships. In contrast to some statistical techniques 
they do not require to specify the relationships between inputs 
and outputs a priori.  ANNs tend to be useful in quality 
modeling because, the number of inputs(object oriented 
metrics) are fairly large, many of the metrics are relevant but 
predictive information lies in a lower dimensional subspace. A 
quality prediction neural model should contain only the most 
significant explanatory metrics  which have an impact above a 
fixed threshold. This allows the size of the neural network to 
be reduced and improves generalization. However, the 
determination of significant input metrics is the most difficult 
and criticized aspect of ANN modeling. With neural networks, 
there is no clear method of  ranking input metrics. We study 
here some alternative rational ways to rank the impact of 
individual OO metrics on fault proneness using neural 
networks. We use some basic   methods for analyzing the 
weights or inputs of neural networks, although some advanced 
methods like Fuzzy logic and Bayesian analysis can be 
applied for neural network weight interpretation. 

This paper is organized as follows. Section II presents 
related work in this area. Section III presents the research 
background. Section IV contains the neural network modeling 
method and architecture. In section V  we present five 
approaches for  ranking   the importance of  individual OO 
metrics. In section VI we develop and evaluate neural models 
based on the obtained rankings and discuss the results 
obtained.  

II. RELATED WORK 
We performed a review of literature on use of ANNs for 

predicting quality models using metrics both in procedural and 
object oriented paradigm. Khoshgoftarr et al. used  one hidden 
layer MLP with backpropagation  training algorithm as a data 
analysis tool for  software quality modeling of a large 
telecommunication system[4]. Their quality model was based 
on call graph metrics and control flow graph metrics as 
predictor variables to predict the  group membership of a 
software module. The modules were classified as fault prone 
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and not fault prone. Thwin and Quah have used Ward and 
Generalized Regression Neural Networks(GRNN) for 
predicting software development faults[5] and software 
readiness[6]. There models are based on OO metrics[5,6]  as 
predictor variables and number of faults as response variables. 
More recently, Gyimothy et al. [7] have used a neural network 
developed at their university to predict the fault proneness of 
classes in an open source software. Except for [6] none the 
above studies have  considered the ranking of impact of 
individual metrics on fault proneness when conducting a data 
analysis using neural networks. In [6] analysis of weights 
method is  followed for finding the impact of individual 
metrics but the algorithmic details are not divulged .   The 
general approach in these papers [4,5] is to  identify 
orthogonal metrics by Principal Component Analysis  for 
dimensionality reduction but impact of individual metrics 
using neural technique is not studied. The input metrics in our 
study are decorrelated  and we look for  other variable 
selection techniques for ANN modeling. 

III. RESEARCH BACKGROUND 
A.  Metrics Studied 
We  choose suite of Chidamber and Kemerer metrics[1] in 

our study as independent variables. 
WMC (Weighted Methods per Class). The WMC is the 

number of methods defined in each class, weighted by their 
complexity. More precisely, WMC is defined as being the 
number of all member functions and operators defined in each 
class.  

DIT (Depth of Inheritance Tree).The DIT is defined as the 
length of the longest path from the class to the root in 
inheritance hierarchy. 

RFC (Response For a Class).This the response for a class 
coupling metric. The response set of a class consists of the set 
M of the methods of the class and the set of methods invoked 
directly by methods in M (i.e., the set of methods that can 
potentially be executed in response to a message being 
received by that class). RFC is the number of methods in the 
response set of  the class. 

NOC (Number Of Children). The NOC is the number of 
direct descendants for each class. 

CBO (Coupling Between Object classes). A class is 
coupled to another one if it uses its member functions and/or 
instance variables. CBO provides the number of classes to 
which a given class is coupled. 

LCOM(Lack of Cohesion on Methods).The number of pairs 
of member functions without shared instance variables, minus 
the number of pairs of member functions with shared instance 
variables. However, the metric is set to zero whenever this 
subtraction is negative. 

LOC (Lines Of Code). The LOC of a class is the number of 
all nonempty, non comment lines of the body of the class and 
all of its methods. 
 

B. Data Collected 
To analyze metrics chosen for this work, their values are 

computed for twelve different systems. These systems are 
developed by under graduate engineering students and 

Masters of Computer Application students at School of 
Information Technology, of our University. The systems were 
developed using Java programming language over duration of 
four months. The aim was to teach students system analysis 
and design techniques as part of their course curriculum. All 
students had experience with Java language and thus they had 
basic knowledge necessary for this study.  

The students were divided into 12 teams of four students 
each. Each team developed a medium-sized system such as 
flight reservation, chat server, proxy server etc. The 
development process used waterfall model. Documents were 
produced at each phase of software development. Faults were 
reported to the developers. A separate group of students 
having prior knowledge of system testing under the guidance 
of senior faculty were assigned the task of testing systems 
according to test plans.  
The following relevant data was collected: 
1. The design and source code of the java programs 
2. The faulty data found by the testing team. 
 

The 12 systems under study consist of 136 classes (39 
KLOC) out of which 85 are system classes and 51 standard 
library classes available in java language. These classes 
contain functions to manipulate files, strings, lists, hash tables, 
frames, windows, menus, threads, socket connection etc. 

 
Table I shows the descriptive statistics of the data for 85 

system classes. The quantities of interest are mean, median, 
Standard Deviation, Inter-quartile range and number of classes 
in which a given metric is greater than zero. 
 

TABLE I 
DESCRIPTIVE STATISTICS FOR OUR DATA OF 85 SYSTEM CLASSES 

Metric Mean Median Standard 
Deviation 

IQR  N>0 

DIT 0.353 0 0.612 1 25 
NOC 0.282 0 0.959 0 10 
LOC 114.423 64 151.658 85 85 
CBO 1.059 1 1.313 1 54 
WMC 5.964 3 6.889 7 80 
RFC 13.4 7 16.357 17 76 
LCOM 25.564 0 65.662 13.25 35 
 

IV. NEURAL NETWORK MODELING 
A.  Architecture Selection 
The multi-layer feed-forward network was used in this 

experiment. The independent variables in this study are the 
seven object oriented metrics from 85 system classes, which 
are inputs to the neural network and dependent variable is the 
fault proneness of a class which is the network output. 
Outliers found to be influential were removed from the data 
set. The neural network was trained using backpropagation 
algorithm. This algorithm generally works best when the 
network inputs and targets are normalized all the input metrics 
and actual outputs were scaled with min-max normalization 
technique. The network architecture consisted of a single 
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hidden layer. The number of hidden neurons was empirically 
determined by partitioning the data into training, validation 
and test subsets in the ratio 3:1:1. A network with two hidden 
neurons gave the best prediction results. Mu was set equal to 
0.001. The training algorithm used was backpropagation with 
Bayesian Regularization, which has already been found the 
best for software engineering applications in existing studies 
[8].          

 
TABLE II 

NEURAL NETWORK ARCHITECTURE 

Hidden Layers  1 
Hidden neurons 2 
Activation function 
hidden layer 

Tansig 

Output neurons 1 
Activation function 
output neuron 

Purelin 

Mu 0.005 
 
After the architecture ha been selected the network is trained 
with data from all 85 system classes to rank the impact of 
metrics. 

B. Metric Ranking Methods 
1.  Univariate Analysis  
In this approach we used only one metric in the neural 

network at a time and created seven models to find out  the 
metrics that are most important in predicting fault proneness. 
The following table shows the results of correlation of 
network outputs with actual fault proneness for individual 
metrics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table IV gives the sum squared training error, sum squared 
weights and effective number of parameters for individual 
metrics by training the network with a Bayesian 
Regularization Algorithm.                     
 
 
 

TABLE IV 
UNIVARIATE MODELING WITH INDIVIDUAL METRICS AS PREDICTORS 

Metric Sum 
Squared 
Error 

Sum squared 
weights 

Effective 
number of 
parameters 

DIT 20.152 0.8401 1.813 
NOC 20.885 0.183 0.985 
LOC 13.016 19.209 3.909 
CBO 17.911 2.577 2.408 
WMC 15.082 2.817 2.579 
RFC 10.159 20.394 3.687 
LCOM 16.038 9.336 3.107 

 
The metrics that have high correctness in predicting fault 

proneness result in lower sum squared error and high sum 
squared weights. 
 

The univariate analysis method considers the impact of 
metrics when they are isolated from other metrics. Although 
univariate analysis provides some insight regarding the 
usefulness of individual metrics it does not capture the 
interaction between various metrics. Rest of the methods we 
consider are multivariate methods wherein all metrics are 
input to the neural network. 

 
2.  Over all Connection Weights  based  Wrapper Method 
This method is also called ANNIGMA[9]. This method 

calculates the product of raw input-hidden and output-hidden 
connection weights between each input neuron and output 
neuron and sums the products across all hidden neurons. The 
metric having the lowest overall connection weight is 
considered to be the least significant and is eliminated from 
the neural network. The order of metric elimination is 
considered to be the ranking of metrics from lowest to highest. 
The confusion matrix is analyzed after each elimination. If the 
sensitivity and specificity does not improve further the 
algorithm can be stopped for model prediction. 

 
3.  Garson’s  Method 
The  method for ranking the relative importance of input 

variables was first proposed by Garson[10]. This method 
essentially involves partitioning  the hidden output connection 
weights of each hidden neurons into components associated 
with each input to the neural network. As contrast to overall 
connection weights method this method uses the absolute 
values of connection weights. 

 
i) For each hidden neuron i , multiply the absolute 

value of  the hidden –output layer connection 
weight by the absolute value of the hidden input 
layer connection weight. Do this for each input 
metric j.  

ii) For each  hidden neuron , divide each Pij 
obtained in step i)  by the sum of  all Pij s to 
obtain Qijs 

iii)  For each input obtain the sum Sj by summing 
the Qijs 

TABLE III 
CORRECTNESS OF INDIVIDUAL METRICS IN 

PREDICTING FAULT PRONENESS 

Metric r  p-value Correctne
ss 

DIT 0.1974 0.0701 All 
classes 
non faulty 

NOC 0.1382 0.0207 All 
classes 
non faulty 

LOC 0.6142 0.0000 67.57% 
CBO 0.3735 0.0004 40.5% 
WMC 0.5275 0.0000 54.05% 
RFC 0.7169 0.0000 78.37% 
LCOM 0.4829 0.0000 45.9% 
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iv) Divide the sum Sj by the sum of Sj  for  all input 
variables . This gives the relative importance or 
contribution  of each of the metrics. 

 
CONTRIBUTION FACTOR OF INPUT METRIC 

VARIABLES BY GARSON'S ANALYSIS OF WEIGHTS 
METHOD
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Fig. 1 Metric Ranking by Garson’s Algorithm 

 
4.  Partial Derivative  Method 
This is also a neural network analysis technique given by 

Ruck [11]. In this technique the partial derivative of the 
network output with respect to each of the input metric is 
calculated. The sum squared of each of the partial derivatives 
is obtained. The metrics that have large positive partial 
derivative values at a large number of exemplar points 
derivative value is considered to be the one that influences   
fault proneness the most. The partial derivative of the neural 
network output yi with respect to input xi is given by 
                                             

           ∑
=

−+=
∂
∂ h

hihhho
i

n

hi
wIIw

x
y

1

11 *)(*)(*                      (1)                

 
Ih   is the   response  of hth neuron in the hidden layer , who 

is the connection weight between hth hidden neuron and output 
neuron, whi  the connection weight between ith input  and hth 

hidden neuron 
(The above equation is valid only when there is a single 

hidden layer and the hidden layer activation function is 
hyperbolic tangent and output layer activation function is 
purely linear.)  The partial derivative is obtained at all the 85 
exemplars for each of the seven inputs and scatter plots are 
drawn to observer the influence of input variable on output. 
The sum of the squares of partial derivatives of input variables 
gives us the impact  of each input variable. 
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Fig. 2 Scatter Plots of  Partial derivative of Neural Network response 

with respect to each of the explanatory OO metrics. 
 

From the scatter plots for partial derivatives of each of the 
following metrics the following observations can be made. 

i) The partial derivative of network output with 
respect to DIT   and NOC is negative. 

ii) The partial derivative of network output with 
respect to LOC, RFC, WMC and LCOM has 
positive values. 

iii) The partial derivative of network output  with 
respect to  CBO does not have a precise positive 
or negative direction and cannot explain the 
output 

 
5.  Perturb Method 
This method is also called sensitivity analysis in some 

research literature. It is basically a method for extracting cause 
and effect relationship between inputs (metrics in our case) 
and outputs (fault proneness).The method involves adding 
white noise or dither to one of the input metrics at a time 
while keeping all other inputs untouched. The network 
learning is disabled during this operation such that the 
network weights are not affected. The following table shows 
the raw sensitivity for different percentages of dither. We 
consider 50% perturbation values for ranking.                                              

TABLE V 
RAW SENSITIVITY OF INPUT METRICS TO WHITE NOISE 

Dither 
Percentage 
Metric 

0.1 0.2 0.3 0.4 0.5 

DIT 0.102 0.187 0.259 0.319 0.372 
NOC 0.148 0.313 0.492 0.685 0.882 
LOC 0.772 0.301 0.702 0.034 0.325 
CBO 1.593 2.912 3.862 4.795 5.677 
WMC 1.818 3.533 4.447 6.113 8.143 
RFC 5.349 10.443 15.349 18.453 20.724 
LCOM 0.781 1.623 2.336 2.858 3.269 
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6.  Classical Stepwise Methods 
We followed two classical stepwise methods: 
 
a) Stepwise forward addition  method  
In the first step seven models are generated as in univariate 

analysis each using only one of the available metrics. Then six 
models are generated, combining the metric that resulted in 
smallest error (for a single input metric) with each of the 
remaining metrics. This procedure is repeated until all the 
metrics are added to the model. The order of integration of the 
metrics is their ranking. 

 
b) Stepwise backward elimination 
Seven models are generated using only six of the available 

metrics. The seventh missed out metric for which the resulting 
models gave the largest error, is the most important. Then six 
models are generated with five metrics, eliminating the most 
significant metric plus one of the six remaining metrics and so 
on. The order of metric elimination is their ranking. 

V. RESULTS 
A.  Ranking of the Metrics According to the Methods 

Employed 
 

TABLE VI 
RANKING OF OO METRICS BY THE FIVE METHODS 

Method 
Metric 

M1 M2 M3 M4 M5( a)  M5(b) 

DIT 7 4 7 7 5 7 
NOC 6 7 6 6 3 6 
LOC 2 2 2 5 2 3 
CBO 5 5 5 3 7 2 
WMC 3 6 3 2 4 4 
RFC 1 1 1 1 1 1 
LCOM 4 3 4 4 6 5 
 
 
M1 : Overall Connection weights based wrapper approach 
M2:Garson’s Method 
M3: Partial  Derivatives Method 
M4:Perturb Method 
M5(a): Stepwise forward addition 
M5(b): Stepwise backward elimination 
 

B.  Model Prediction and Evaluation  
We performed a 9 cross validation of the proposed neural 

network model. The 85 data exemplars were randomly split 
into 9 partitions (five partitions of 9 data points and four 
partitions of 10 data points).The classification results for the 
full model and for each of the five methods are given are 
given in Tables VII-XII. Table XIII   gives sensitivity, 
specificity, proportion correct, true positive rate and J 
coefficient [13].   
 
 
 
 

TABLE VII 
CLASSIFICATION RESULTS BASED ON FULL MODEL 

Predicted 
Actual Low Risk High Risk 

Low Risk 41 7 
High Risk 11 26 

 

TABLE VIII 
CLASSIFICATION RESULTS BASED ON OVERALL CONNECTION WEIGHTS 

AND PARTIAL DERIVATIVES METHODS 

Predicted 
Actual Low Risk High Risk 

Low Risk 44 4 
High Risk 5 32 
 
 

TABLE IX 
CLASSIFICATION RESULTS BASED ON  GARSON'S METHOD 

Predicted 
Actual Low Risk High Risk 

Low Risk 39 9 
High Risk 7 30 

 
 

TABLE X 
CLASSIFICATION RESULTS BASED ON  PERTURB METHOD 

Predicted 
Actual Low Risk High Risk 

Low Risk 34 14 
High Risk 6 31 
 
 

TABLE XI 
CLASSIFICATION RESULTS BASED ON STEPWISE FORWARD 

ADDITION 

Predicted 
Actual Low Risk High Risk 

Low Risk 37 11 
High Risk 6 31 
 
 

TABLE XII 
CLASSIFICATION RESULTS BASED ON STEPWISE BACKWARD 

ELIMINATION 

Predicted 
Actual Low Risk High Risk 

Low Risk  39 9  
High Risk  5  32 
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TABLE XIII 
ACCURACY OF PREDICTION MODELS 

M
et
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d 

M
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op
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n 
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Tr
ue

po
si

tiv
e

R
at

e J
C

oe
ff
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ie

nt

M1
& 
M3 

RFC, LOC 
,LCOM, 
WMC 86.40% 91.60% 89.40% 88.80% 0.78

M2 
RFC , LOC, 
LCOM1 81.08% 81.25% 81.17% 76.90% 0.62

M4 
RFC, WMC, 
CBO 83.78% 70.80% 76.47% 68.88% 0.55

M5
(a) 

RFC, LOC 
,NOC 89.19% 77.08% 82.35% 75% 0.66

M5
(b) 

RFC,CBO,LO
C,WMC 86.40% 81.25% 83.5% 78.05% 0.67

 

VI. CONCLUSION 
The partial derivatives method and overall connection 

weights based wrapper approach give the best results. Both 
methods are found to be stable. These methods reduce the size 
and number of neural networks to be built and trained. The 
perturb method gives a low ranking to LOC which is an 
important metric. Stepwise methods give poor results as they 
select  metrics found to be insignificant in univariate analysis , 
like NOC . Four methods identify RFC and LOC as the most 
significant metrics i.e., highly related to fault proneness.  DIT 
and NOC receive a low rank from most of the five methods. 
Thus, ANNs can be used to rank the most significant metrics 
and build accurate prediction models based on subset of object 
oriented metrics. 
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