Search results for: indoor air temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2695

Search results for: indoor air temperature

1915 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: Aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1914 A Design of Fractional-Order PI Controller with Error Compensation

Authors: Mazidah Tajjudin, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

Keywords: Fractional-order PI, Ziegler-Nichols tuning, Oustaloup's Recursive Approximation, steam temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
1913 Process Parameter Optimization for the Production of Gentamicin using Micromonouspora Echiniospora

Authors: M.Rajasimman, S.Subathra

Abstract:

The process parameters, temperature, pH and substrate concentration, were optimized for the production of gentamicin using Micromonouspora echinospora. Experiments were carried out according to central composite design in response surface method. The optimum conditions for the maximum production of gentamicin were found to be: temperature – 31.7oC, pH – 6.8 and substrate concentration – 3%. At these optimized conditions the production of gentamicin was found to be – 1040 mg/L. The R2 value of 0.9465 indicates a good fitness of the model.

Keywords: Gentamicin, Micromonouspora echinospora, response surface method, optimization, central composite design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
1912 Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming

Authors: Mai Thanh Truc, Masao Yoshida

Abstract:

Global temperature had increased by about 0.5oC over the past century, increasing temperature leads to a loss or a decrease of soil organic matter (SOM). Whereas soil organic matter in many tropical soils is less stable than that of temperate soils, and it will be easily affected by climate change. Therefore, conservation of soil organic matter is urgent issue nowadays. This paper presents the effect of different doses (5%, 15%) of Ca-type zeolite in conjunction with organic manure, applied to soil samples from Philippines, Paraguay and Japan, on the decomposition resistance of soil organic matter under high temperature. Results showed that a remain or slightly increase the C/N ratio of soil. There are an increase in percent of humic acid (PQ) that extracted with Na4P2O7. A decrease of percent of free humus (fH) after incubation was determined. A larger the relative color intensity (RF) value and a lower the color coefficient (6logK) value following increasing zeolite rates leading to a higher degrees of humification. The increase in the aromatic condensation of humic acid (HA) after incubation, as indicates by the decrease of H/C and O/C ratios of HA. This finding indicates that the use of zeolite could be beneficial with respect to SOM conservation under global warming condition.

Keywords: Global warming, Humic substances, Soil organicmatter, Zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1911 Stability of New Macromycetes Phytases under Room, Cooling and Freezing Temperatures of Storage

Authors: Michele R. Spier, Denise N. X. Salmon, Renato L. Binati, Luíza C. Piva, Adriane B.P. Medeiros, Carlos R. Soccol

Abstract:

Phytases are enzymes used as an important component in monogastric animals feeds in order to improve phosphorous availability, since it is not readily assimilated by these animals in the form of the phytate presented in plants and grains. As these enzymes are used in industrial activities, they must retain its catalytic activities during a certain storage period. This study presents information about the stability of 4 different phytases, produced by four macromycetes fungi through solid-state fermentation (SSF). There is a lack of data in literature concerning phytase from macromycetes shelf-life in storage conditions at room, cooling and freezing temperatures. The 4 phytases from macromycetes still had enzymatic activities around 100 days of storage at room temperature. At cooling temperature in 146 days of studies, the phytase from G. stipitatum was the most stable with 44% of the initial activity, in U.gds (units per gram of dried fermented substrate). The freezing temperature was the best condition storage for phytases from G. stipitatum and T. versicolor. Each condition provided a study for each mushroom phytase, totalizing 12 studies. The phytases showed to be stable for a long period without the addition of additives.

Keywords: macromycetes, phytase, solid-state fermentation, wheat bran, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1910 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc

Abstract:

Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, frictional heat generation, process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
1909 Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions

Authors: Jinkyu Park, Yungjin Kim, Byungdeok In, Sangki Park, Kihyung Lee

Abstract:

Internal combustion engines rejects 30-40% of the energy supplied by fuel to the environment through exhaust gas. thus, there is a possibility for further significant improvement of efficiency with the utilization of exhaust gas energy and its conversion to mechanical energy or electrical energy. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. Predict to th optimum position of temperature distribution and the performance of TEG through numerical analysis. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of a thermoelectric generator.

Keywords: Thermoelectric generator, Numerical analysis, Seebeck coefficient, Figure of merit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
1908 Experimental Investigation of Drying Behavior of Rosehip in a Cyclone-Type Dryer

Authors: Ayse Bicer, Filiz Kar

Abstract:

This paper describes an experimental investigation of the drying behavior and conditions of rosehip in a convective cyclone-type dryer. Drying experiments were conducted at air inlet temperatures of 50, 60 and 70 o C and air velocities of 0.5, 1 and 1.5 ms–1. The parametric values obtained from the experiments were fitted to the Newton mathematical models. Consequently, the drying model developed by Newton model showed good agreement with the data obtained from the experiments. Concluding, it was obtained that; (i) the temperature is the major effect on the drying process, (ii) air velocity has low effect on the drying of rosehip, (iii) the C-vitamin is observed to change according to the temperature, moisture, drying time and flow types. The changing ratio is found to be in the range of 0.70-0.74.

Keywords: Rosehip, drying, food quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
1907 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem

Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom

Abstract:

This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.

Keywords: PSO, SA, N-queen, CSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1906 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

Authors: K. Fraňa, M. Müller

Abstract:

A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2

Keywords: Organic Rankine Cycle, thermal efficiency, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4018
1905 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
1904 The Spectral Power Amplification on the Regular Lattices

Authors: Kotbi Lakhdar, Hachi Mostefa

Abstract:

We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.

Keywords: Ising model, phase transitions, critical temperature, critical exponent, spectral power amplification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1903 The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates

Authors: N. Tugrul, A. S. Kipcak, E. MoroydorDerun, S. Piskin

Abstract:

Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, theraw materials of ZnSO4.7H2O, NaOH and H3BO3werecharacterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates.The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result,Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results.

Keywords: Zinc borate, ZnSO4.7H2O, NaOH, H3BO3, XRD, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3781
1902 Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

Authors: Nabil M. Muhaisen, Rajab Abdullah Hokoma

Abstract:

This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler.

Keywords: Boiler, Calculation, Efficiency, Performance. Steam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3486
1901 Hydrogen Gas Sensing Properties of Multiwalled Carbon Nanotubes Network Partially Coated with SnO2 Nanoparticles at Room Temperature

Authors: Neena Jaggi, Shivani Dhall

Abstract:

In the present work, hydrogen gas sensor of modest sensitivity utilizing functionalized multiwalled carbon nanotubes partially decorated with tin oxide nanoparticles (F-MWCNTs/SnO2) has been fabricated. This sensing material was characterized by scanning electron microscopy (SEM). In addition, a remarkable finding was that the F-MWCNTs/SnO2 sensor shows good sensitivity as compared to F-MWCNTs for low concentration (0.05-1% by volume) of H2 gas. The fabricated sensors show complete resistance recovery and good repeatability when exposed to H2 gas at the room temperature conditions.

Keywords: F-MWCNTs, SnO2 nanoparticles, Chemiresistor, I-V Characteristics, H2 Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
1900 Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

Authors: S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail

Abstract:

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.

Keywords: biomass, decomposition, hydrogen, lignocellulosic, thermogravimetry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
1899 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081
1898 Analysis of Thermal Damping in Si Based Torsional Micromirrors

Authors: R. Resmi, M. R. Baiju

Abstract:

The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.

Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
1897 Removal of CO2 and H2S using Aqueous Alkanolamine Solusions

Authors: Zare Aliabad, H., Mirzaei, S.

Abstract:

This work presents a theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous solutions of MDEA and DEA. In this process the acid components react with the basic alkanolamine solution via an exothermic, reversible reaction in a gas/liquid absorber. The use of amine solvents for gas sweetening has been investigated using process simulation programs called HYSYS and ASPEN. We use Electrolyte NRTL and Amine Package and Amines (experimental) equation of state. The effects of temperature and circulation rate and amine concentration and packed column and murphree efficiency on the rate of absorption were studied. When lean amine flow and concentration increase, CO2 and H2S absorption increase too. With the improvement of inlet amine temperature in absorber, CO2 and H2S penetrate to upper stages of absorber and absorption of acid gases in absorber decreases. The CO2 concentration in the clean gas can be greatly influenced by the packing height, whereas for the H2S concentration in the clean gas the packing height plays a minor role. HYSYS software can not estimate murphree efficiency correctly and it applies the same contributions in all diagrams for HYSYS software. By improvement in murphree efficiency, maximum temperature of absorber decrease and the location of reaction transfer to the stages of bottoms absorber and the absorption of acid gases increase.

Keywords: Absorber, DEA, MDEA, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17263
1896 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
1895 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1894 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: Thermophoresis, porous medium, variable surface heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
1893 Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little

Abstract:

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Keywords: By-products, inhibitory effect, mixture, photocatalytic oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
1892 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: Efficiency, exergy, gas turbine, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
1891 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets

Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy

Abstract:

In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.

Keywords: Laser welding, Butt weld, 304 SS, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4957
1890 MIMO Performances in Tunnel Environment: Interpretation from the Channel Characteristics

Authors: C. Sanchis-Borras, J. M. Molina-Garcia-Pardo, P. Degauque, M. Lienard

Abstract:

The objective of this contribution is to study the performances in terms of bit error rate, of space-time code algorithms applied to MIMO communication in tunnels. Indeed, the channel characteristics in a tunnel are quite different than those of urban or indoor environment, due to the guiding effect of the tunnel. Therefore, MIMO channel matrices have been measured in a straight tunnel, in a frequency band around 3GHz. Correlation between array elements and properties of the MIMO matrices are first studied as a function of the distance between the transmitter and the receiver. Then, owing to a software tool simulating the link, predicted values of bit error rate are given for VLAST, OSTBC and QSTBC algorithms applied to a MIMO configuration with 2 or 4 array elements. Results are interpreted from the analysis of the channel properties.

Keywords: MIMO, propagation channel, space-time algorithms, tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
1889 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace

Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia

Abstract:

In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.

Keywords: α-Alumina, Consolidation, Matrix Ceramics, Powdery composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1888 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions

Authors: Jamal S. Yassin

Abstract:

This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.

Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
1887 Statistical Relation between Vegetation Cover and Land Surface Temperature in Phnom Penh City

Authors: Gulam Mohiuddin, Jan-Peter Mund

Abstract:

This study assessed the correlation between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Phnom Penh City (Cambodia) from 2016 to 2020. Understanding the LST and NDVI can be helpful to understand the Urban Heat Island (UHI) scenario, and it can contribute to planning urban greening and combating the effects of UHI. The study used Landsat-8 images as the data for analysis. They have 100 m spatial resolution (per pixel) in the thermal band. The current study used an approach for the statistical analysis that considers every pixel from the study area instead of taking few sample points or analyzing descriptive statistics. Also, this study is examining the correlation between NDVI and LST with a spatially explicit approach. The study found a strong negative correlation between NDVI and LST (coefficient range -0.56 to -0.59), and this relationship is linear. This study showed a way to avoid the probable error from the sample-based approach in examining two spatial variables. The method is reproducible for a similar type of analysis on the correlation between spatial phenomena. The findings of this study will be used further to understand the causation behind LST change in that area triangulating LST, NDVI and land-use changes.

Keywords: Land Surface Temperature, NDVI, Normalized Difference Vegetation Index, remote sensing, methodological development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1886 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator

Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad

Abstract:

The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767