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Abstract—We show that a simple transformation between the 

regular lattices (the square, the triangular, and the honeycomb) 
belonging to the same dimensionality can explain in a natural way the 
universality of the critical exponents found in phase transitions and 
critical phenomena. It suffices that the Hamiltonian and the lattice 
present similar writing forms. In addition, it appears that if a property 
can be calculated for a given lattice then it can be extrapolated simply 
to any other lattice belonging to the same dimensionality. In this 
study, we have restricted ourselves on the spectral power 
amplification (SPA), we note that the SPA does not have an effect on 
the critical exponents but does have an effect by the criticality 
temperature of the lattice; the generalisation to other lattice could be 
shown according to the containment principle. 

 
Keywords—Ising model, phase transitions, critical temperature, 

critical exponent, spectral power amplification. 

I. INTRODUCTION 

ANY web-like structures such as the Internet, world-
wide web, power supply and communications networks, 

etc., which are of high importance for modern society, belong 
to a class of complex networks [1]-[5]. In many cases, such 
networks exhibit scale-free (SF) topology, i.e., their degree 
distribution (distribution of the number of edges, or 
connections, per node) obeys a power scaling law ∝

, 	2	 [2]-[4]. Apart from the topological properties of 
complex arrays, various physical phenomena in systems with 
the structure of complex networks have recently become a 
subject of interest, including stochastic resonance [6] (SR, for 
review see [7], [8]) in systems on small world networks [9]-
[12] (with partial rewiring of regular connections [1]) and on 
SF networks [13], [14], coherence resonance [15], [16] and 
deterministic amplification of weak signals in SF networks of 
bistable oscillators [17]. Also, SR in the Ising model with 
ferromagnetic coupling on small-world [18] and SF [19], [20] 
networks was studied, with a weak periodic magnetic field as 
the input signal, time-dependent order parameter as the output 
signal, and thermal fluctuations playing the role of noise. As 
in the case of SR in the Ising model on regular or globally 
coupled arrays [21]-[27], the response of the system to the 
oscillating magnetic field was maximum in the vicinity of the 
critical temperature for the ferromagnetic transition due to the 
divergence of the magnetic susceptibility. Besides, in the case 
of the Ising model on SF networks constructed as evolving 
networks with preferential attachment [2], [4] under certain 
assumptions, the response to the oscillating field showed 
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additional maximum in the ordered phase, below the critical 
temperature. As a result, the SPA, defined as the strength of 
the Fourier component of the output signal at the frequency of 
the input signal divided by the strength of the input signal, 
exhibited double maxima as a function of the temperature 
[20]. This is an example of stochastic multi-resonance [28]-
[30]. 

This paper is organized as follows: In Section II, we shall 
define a certain “writing form” for a given lattice in order to 
develop on the Ising model. Then in Section III, we shall 
examine the criticality temperature and the universality of the 
critical exponent on the planar lattices. In Section IV, we show 
that the SPA on an arbitrarily lattice could be related only by 
the criticality temperature of another lattice belonging to the 
same dimensionality. Finally, the conclusion is reported in 
Section V. 

II. THE “WRITING” OF A LATTICE 

Obviously, there are many rigorous mathematical 
representations of the lattices in terms of graphs, subgraphs, 
and edges. However, we shall propose a simple picture that 
gives a simple representation of the lattice. Consider a set of  
sites (atoms) located at the vertices of a regular lattice denoted 
by , ,  where  is the coordination number and  the 
Euclidean dimensionality of the corresponding space. To 
assure the condition of regularity of the lattice, the size  
would be infinite. Obviously, the lattice appears as a mixture 
of 	  sites and  bonds, with . In Fig. 1, we have 

drawn some common planar regular lattices. 
 

 
Fig. 1 Some bi-dimensional regular lattices: the triangular (a), the 

square (b), the honeycomb (c) and the Kagome (d) 
 
Denoting site 	by ≪ ≫ and the bond , 	by ∷ , we 

can adopt the following symbolic representation referred to as 
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a “writing form” for the lattice 
 

, ∑ ≪ ≫⊕∑ ∷,    (1) 
 
Here, the ∑ 		and ∑ , indicate summations over the 

atoms and the bonds of the lattice, respectively. 
The linear chain ( ) is a one-dimensional lattice with 

2. It presents one principal direction so that: 
 

, ∑ ≪ ≫⊕∑ ∷ 1    (2) 
 
The square lattice ( ) is a two-dimensional lattice with	

4. It is characterized by two principal directions , 		 . It is 
given by: 

 
, ∑ ≪ , ≫⊕∑ , ∷ , 1,, ⊕

, ∷ 1,  (3) 
 
In the triangular lattice ( 4), there are three principal 

directions , 		 ,  but the direction  can be expressed in 
terms of the two other directions so that: 

 
, ∑ ≪ , ≫⊕∑ , ∷ , 1,, ⊕

, ∷ 1, ⊕ ∑ , ∷ 1, 1,
 (4)

 

A. The Model 

For the sake of simplicity and without a loss of generality, 
we restrict ourselves to the branch of magnetism and 
particularly to the Ising model. Let Si be the random variable 
of spin on atom i. We say that a function f is a free lattice 
function if it has the following form: 

 

, , , ∑ ∑ ∑ ,   (5) 
 
The ∑ 	,  indicates a sum over pairs of nearest 

neighbouring sites that form bonds of the lattices. Such a 
function can be developed “freely” on the lattice because it 
possesses a similar writing form like the lattice one: the 
quantities and  are relevant to atom 	≪ ≫, while  
reflects the bond ∷ .	 We say that the free function is in 
perfect harmony with the lattice. 

The Hamiltonian of the system in the Ising model is given 
as: 

 

, ∆, , ∑ ,               (6) 
 
In order to observe SR the in-put periodic signal in the form 

of the external oscillating magnetic field,  is 
applied to all spins. The Hamiltonian for the model is: 

 

∑ , ∑ ,,   (7) 
 
An expansion of the Hamiltonian (7) on the square lattice 

leads to: 
 

	 , 	

∑ , ,, , ∑ ,,  (8) 

 
The transition rate between two-spin configuration, which 

differs by a single flip of on spin, i.e., that in node ,  is 
given by the Glauber Dynamics:  

 

, , 1 , tanh
,                         (9) 

 
with  

 

, , , , ,  (10) 

 
is a local field acting on the spin ,  (with degree ,	 ) at 
time t, T is the temperature. The output signal is the time-
dependent order parameter S(t), 

 

∑ , ,     (11) 

 
In order to observe SR the SPA is evaluated from the output 

signal, 
 

SPA | |
 	, lim → ∑       (12) 

 
Similarly, the development of the Hamiltonian (7) on the 

triangular lattice gives: 
 

	 , ∑ , ,, , ,

∑ ,,  (13) 
 

Or by,  

	 , , ∑ , , , ,, , , ,

, , ∑ , ,, ,  (14) 
 
In the same case, the transition rate between two-spin 

configuration which differ by a single flip of on spin, i.e., that 
in node , ,  is given by the Glauber Dynamics:  

 

, , , , 1 , , tanh
, ,              (15) 

 
with 

, , 	

, , , , , , , , , , , ,

 
(16)

 
 

is a local field acting on the spin , ,  (with degree 
,	 , ) at time t, T is the temperature. The output signal is 

the time-dependent order parameter S(t), 
 

∑ , , , ,   (17) 
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In order to observe SR the SPA is evaluated from the output 
signal, 

 

SPA
| |

 ,		 lim → ∑   (18) 

III. THE CRITICAL TEMPERATURE AND THE UNIVERSALITY  
OF THE CRITICAL EXPONENT 

A. The Critical Temperature  

The critical temperature varies linearly in the three: lattice, 
square, triangular and honeycomb as: 

 

, , , , ∑ , ,,     (19) 
 

, , , , ∑ , ,,     (20) 
 

. , , , , , ∑ ,
.

,
.

,    (21) 
 

where the coefficients , , , 	, ,
.  are depending on the 

magnitude of the spin S and on the bonds of the lattice . So for 
a system is the same type of bonds, 
 

, , 	 ,
. 		for all bonds of the lattice 

 

 , , .  . Since ,	 ,	 . . . 
 

In the tight-binding picture, , , , , ,
.

. 	for the nearest neighbouring sites and zero elsewhere. 
Then the critical temperature in the three lattices is written as: 

 

, , , , .
   (22) 

 

, , , ,
.

    (23) 
 

. , , , , ,
.

. .   (24) 
 

This result could be extended to any lattice L(z,d.N) as: 
 

, , , , .
    (25) 

B. Universality of the Critical Exponent 

The Universality in a critical phenomenon means that some 
remarkable identities remain unchanged when changing the 
geometrics of a system. We will look in this paragraph at 
universality in its deep meaning from universality in different 
lattice in the same Euclidean space. Consider a physical 
quantity F has a singular behaviour near the critical 
temperature. We write this singularity to the triangular lattice 

, ,  and to the square lattice , , . We can 
write: 

 

, , , ,  , →         (26) 
 

, , , ,  , →      (27) 

Assume now that there is a value 	 such that the 

quantities F S, J , z , d, N , and F S, J , z , d, N 	 are 

mathematically identical, allowing us to write: 
 

              (28) 
 

Indeed, by applying the functional "log" in (28), we get: 
 

  (29) 
 

As the quantity ln	  is a monotonic function of the 
variable T, then the only solutions to (29) are given by: 
 

, , , , , ,               (30) 
 

, , , , , ,               (31) 
 

, , , , , ,               (32) 
 

Similarly to the triangular lattice and honeycomb is 
obtained as : 
 

, , , , , ,    (33) 
 

, , , , , ,    (34) 
 

, , , , , ,    (35) 
 

This result could be extended to any network L(z,d.N) as: 
 

, , , , , ,    (36) 
 

, , , , , ,    (37) 
 

, , , , , ,    (38) 
 

The second solution provides that the critical exponent 
, , ,  is independent of the lattice form and energies 

correlations, i.e., the critical exponent is invariant under 
transformations of the lattice.  

IV. SPECTRAL POWER AMPLIFICATION 

A. Mean Field Approximation  

The master equation for the probability that at time t the 
system is in the spin configuration ( , ) is given as: 

 
,

, tanh	 , )            (39) 
 
Divide the nodes of the square lattice according to their 

degrees ,  and assume that the average values of spin 
located in the nodes belonging to the classic with degree ,  
are equal to , . 

Multiply both sides of (39) by ,  , perform the sum over 
all nodes of the square lattice and replace with a sum over the 
classes of nodes. 
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∑ ∑ tanh

   (40) 
 
Similarly to the triangular lattice we obtained: 
 

	

∑ ∑ ∑ tanh

		            (41) 

B. Stationary Values of the Order Parameter and 
Magnetization  

In the absence of the magnetic field, the system evolves 
towards a stable equilibrium with the corresponding value of 
the order parameter  which can be obtained as a stable 
fixed point of (39), (40) with 0, respectively.  

 
	

tanh  (42) 

 

  

tanh                (43) 

 
The corresponding stationary value of the magnetization 

 is then, 
 

∑ ∑ tanh

tanh   (44) 

 
Similarly, the triangular lattice is then, 

 

∑ ∑ tanh	

 	

tanh   (45) 

 
Equations (44), (45) have one stable fixed point 

0, 0 for ,	  corresponding to the 
paramagnetic phase, and two stable symmetric fixed points 
∓ ,∓  with 		 0, 0 for 

,	  corresponding to the ferromagnetic phase. 
The temperature is 

 

 
.

                     (46) 

 
.

                (47) 

 

where	 , ′ , ′′  is the second moment of the 
distribution , ,  depends on the scaling 
exponent  and on the number of bonds  , . For 	3, 
the system undergoes a ferromagnetic phase transition at the 
critical temperature (taking into account that the critical 
exponent is invariant under transformations of the lattice), we 
have: 

 

                                (48) 

 

                                 (49) 

 
for 2	 	 	3 the critical temperature diverges in the 
thermodynamic limit, however, for finite ,  there is a 

crossover temperature: ∝ , ∝  for 

	 3 and ∝ , ∝  for 
3	separating the ordered and disordered phases. 

C. Linear Response Theory  

The response of the model to the weak oscillating magnetic 
field	 → 0 for given T can be studied in the MF 
approximation in the framework of the LRT. It is assumed that 
the MF order parameter  oscillates around the stable 
stationary state, i.e., 	 	 	where → 0. 
Inserting this in to (40), (41), expanding the tanh function in 
the Taylor series up to linear terms with respect to 

	, we have: 
 

=-                           (50) 

 

In the square lattice we have: 
 

1 ∑ ∑   

 (51) 
 

∑ ∑ ∑  
   (52) 

 
Similarly to the triangular lattice we obtained: 
 

1
1 	

∑ ∑ ∑    
(53) 

 
1

	

∑ ∑ ∑   (54) 

 
where  is the MF relaxation time (to evaluate  and  
for  the integration by parts was performed, and (42)-
(45) were taken into account). The asymptotic solution for 
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(50) is: 
sin	                             (55) 

 

                           (56) 

 
arctan	                               (57) 

 
Thus, the  is  

 

    (58) 

 

Hence, the  is proportional to , where  is 

a dynamical susceptibility of the order parameter S(t). In the 
paramagnetic phase with  there is 0, 
1	and 
 

1    (59) 

 
Similarly to the triangular lattice and honeycomb we have: 
 

1    (60) 

 

. 1 .    (61) 

 
This result could be extended to any lattice L(z,d.N) as: 
 

1    (62) 

V. CONCLUSION 

In this study we have restricted ourselves to the case of the 
two regular planar lattices: the triangular and the square. We 
have shown that the critical exponent is invariant under 
transformations of the lattices. On the other hand, we have 
observed that the SPA in this regular planar lattice belonging 
to the same dimensionality d can effect only by the critical 
temperature and have no effect on the critical exponents. The 
generalization of this study to other planar lattices and to other 
dimensions would be discussed in a future paper. 
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