The Spectral Power Amplification on the Regular Lattices
Authors: Kotbi Lakhdar, Hachi Mostefa
Abstract:
We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle.
Keywords: Ising model, phase transitions, critical temperature, critical exponent, spectral power amplification.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340298
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857References:
[1] D. J. Watts, S. H. Strogatz, Nature 393, 440 (1998).
[2] A.-L. Barabási, R. Albert, Science 286, 509 (1999).
[3] R. Albert, A.-L. Barabási, Rev. Mod. Phys.74, 47 (2002).
[4] S. N. Dorogovtsev, J. F. F. Mendes, Adv. Phys. 51, 1079(2002).
[5] S. Boccaletti, V. Latora, Y. Morendo, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006).
[6] R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453(1981).
[7] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev.Mod. Phys.70, 223 (1998).
[8] M. D. McDonell, N. G. Stocks, C. E. M. Pearce, D. Abbott, Stochastic Resonance. From Suprathrteshold Stochastic Resonance to Stochastic Signal Quantization, 1st edn. (Cambridge University Press, Cambridge, 2008).
[9] Z. Gao, B. Hu, G. Hu, Phys. Rev. E 65, 016209 (2001).
[10] M. Kuperman, D. Zanette, Eur. Phys. J. B 26, 387 (2002).
[11] M. Perc, Phys. Rev. E 76, 066203 (2007).
[12] M. Perc, M. Gosak, New J. Phys. 10, 053008 (2008).
[13] A. Krawiecki, Physica A 333, 505 (2004).
[14] M. Perc, Phys. Rev. E 78, 036105 (2008).
[15] O. Kwon, H.-T. Moon, Phys. Lett. A 298, 319 (2002).
[16] O. Kwon, H.-H. Jo, H.-T. Moon, Phys. Rev. E 72, 066121(2005).
[17] J. A. Acebrón, S. Lozano, A. Arenas, Phys. Rev. Lett. 99,128701 (2007).
[18] H. Hong, B. J. Kim, M. Y. Choi, Phys. Rev. E66, 11107(2002).
[19] A. Krawiecki, Int. J. Modern Phys. B 18, 1759 (2004).
[20] A. Krawiecki, Acta Phys. Polonica B 39, 1103 (2008).
[21] Z. N´ eda, Phys. Rev. E 51, 5315 (1995).
[22] J. J. Brey, A. Prados, Phys. Lett. A 216, 240 (1996).
[23] U. Siewert, L. Schimansky-Geier, Phys. Rev. E 58, 2843(1998).
[24] K.-T.Leung,Z.Néda, Phys. Lett. A 246, 505 (1998).
[25] K.-T.Leung,Z.Néda, Phys. Rev. E 59 , 2730 (1999).
[26] B. J. Kim, P. Minnhagen, H. J. Kim, M. Y. Choi, G. S. Jeon, Europhys. Lett. 56, 333 (2001).
[27] M. Acharyya, Phys. Rev. E 59, 218 (1999).
[28] J. M. G. Vilar, J. M. Rubí, Phys. Rev. Lett. 78, 2882 (1997).
[29] J. M. G. Vilar, J. M. Rub´ ı, Physica A 264, 1 (1999).
[30] S. Matyja´ skiewicz, A. Krawiecki, J. A. Ho lyst, L. Schimansky-Geier, Phys. Rev. E 68, 016216 (2003).