Search results for: Solar Flat Plate Collector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1037

Search results for: Solar Flat Plate Collector

287 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570
286 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review

Authors: D. Vidhyaprakash, A. Elango

Abstract:

In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.

Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
285 SMRF Seismic Response: Unequal Beam Depths

Authors: Babak H. Mamamqani, Alimohammad Entezarmahdi

Abstract:

There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results.

Keywords: Analytical modeling, Haunch connection, Seismic design, Unequal beam depth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
284 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum

Abstract:

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Keywords: Orifice, k-e model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
283 Analytical Cutting Forces Model of Helical Milling Operations

Authors: Changyi Liu, Gui Wang, Matthew Dargusch

Abstract:

Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.

Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109
282 Cladding of Al and Cu by Differential Speed Rolling

Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha

Abstract:

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
281 Experimental Investigation of the Transient Cooling Characteristics of an Industrial Glass Tempering Unit

Authors: Hilmi Yazici, Mehmet Akcay, Mustafa Golcu, Mehmet F. Koseoglu, Yakup Sekmen

Abstract:

Energy consumption rate during the cooling process of industrial glass tempering process is considerably high. In this experimental study the effect of dimensionless jet to jet distance (S/D) and jet to plate distance (H/D) on the cooling time have been investigated. In the experiments 4 mm thick glass samples have been used. Cooling unit consists of 16 mutually placed seamless aluminum nozzles of 8 mm in diameter and 80 mm in length. Nozzles were in staggered arrangement. Experiments were conducted with circular jets for H/D values between 1 and 10, and for S/D values between 2 and 10. During the experiments Reynolds number has been kept constant at 30000. Experimental results showed that the longest cooling time with 87 seconds has been observed in the experiments for S/D=10 and H/D=10 values, while the shortest cooling time with 42.5 seconds has been measured in the experiments for S/D=2 and H/D=4 values.

Keywords: Glass tempering, cooling, Reynolds number, nozzle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
280 Application of Phase Change Materials (PCMs) in Maintaining Comfort Temperature inside an Automobile

Authors: A. Jamekhorshid, S. M. Sadrameli

Abstract:

This paper presents the modeling results of an innovative system for the temperature control in the interior compartment of a stationary automobile facing the solar energy from the sun. A very thin layer of PCM inside a pouch placed in the ceiling of the car in which the heating energy is absorbed and release with melting and solidification of phase change materials. As a result the temperature of the car interior is maintained in the comfort condition. The amount of required PCM has been calculated to be about 755 g. The PCM-temperature controlling system is simple and has a potential to be implemented as a practical solution to prevent undesirable heating of the automobile-s cabin.

Keywords: Phase Change Material (PCM), automobile's cabin, temperature control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4095
279 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation

Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza

Abstract:

Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.

Keywords: Grid computing, grid information service, P2P, resource discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
278 Performance of Nine Different Types of PV Modules in the Tropical Region

Authors: Jiang Fan

Abstract:

With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.

Keywords: Monocrystalline, Multicrystalline, Amorphous Silicon, Cadmium Telluride and thin film PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3669
277 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets

Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham

Abstract:

Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.

Keywords: Bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
276 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique

Authors: Navajyoti Panda, R. S. Pawar

Abstract:

In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.

Keywords: Bending, V-bending, FEM, spring-back, Taguchi, HyperForm, profile projector, HSLA 420 & St12 materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
275 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.

Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
274 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm

Authors: M. R. Ghasemi, A. Ehsani

Abstract:

In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.

Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
273 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: Building, collapse, factor of safety, isolated footing, PLAXIS 2D, slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
272 Guided Wave Sensitivity for De-Bond Defects in Aluminum Skin-Honeycomb Core

Authors: A. Satour, F. Boubenider, R. Halimi, A. Badidibouda

Abstract:

Sandwich plates are finding an increasing range of application in the aircraft industry. The inspection of honeycomb composite structure by conventional ultrasonic technique is complex and very time consuming. The present study demonstrates a technique using guided Lamb waves at low frequencies to predict de-bond defects in aluminum skin-honeycomb core sandwich structure used in aeronautics. The numerical method was investigated for drawing the dispersion and displacement curves of ultrasonic Lamb wave propagated in Aluminum plate. An experimental study was carried out to check the theoretical prediction. The detection of unsticking between the skin and the core was tested by the two first modes for a low frequency. It was found that A0 mode is more sensitive to delamination defect compared to S0 mode.

Keywords: Damage detection, delamination, guided waves, Sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
271 Separation of Vitamin B2 and B12 byImpregnate HPTLC Plates with Boric Acid

Authors: Homayon Ahmad Panahi, Hossein Sid Kalal, Atyeh Rahimi

Abstract:

A high performance thin layer chromatography system (HPTLC) for the separation of vitamin B2 and B12 has been developed. The separation was successfully using a solvent system of methanol, water, ammonia 7.3.1 (V/V) as mobile phase on HPTLC plates impregnated with boric acid. The effect of other mobile phases on the separation of vitamins was also examined. The method is based on different behavior of investigated compounds in impregnated TLC plates with different amount of boric acid. The Rf values of vitamin B2 and B12 are considered on non impregnated and impregnated silica gel HPTLC plate with boric acid. The effect of boric acid in the mobile phase and on HPTLC plates on the RF values of the vitamins has also been studied.

Keywords: High performance thin layer chromatography, HPTLC, Vitamin B2, Vitamin B12, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
270 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid

Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop

Abstract:

In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.

Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
269 Seismic Response of Hill Side Step-back RC Framed Buildings with Shear Wall and Bracing System

Authors: Birendra Kumar Bohara

Abstract:

The hillside building shows different behavior as a flat ground building in lateral loading. Especially the step back building in the sloping ground has different seismic behavior. The hillside building 3D model having different types of structural elements is introduced and analyzed with a seismic effect. The structural elements such as the shear wall, steel, and concrete bracing are used to resist the earthquake load and compared with without using any shear wall and bracing system. The X, inverted V, and diagonal bracing are used. The total nine models are prepared in ETABs finite element coding software. The linear dynamic analysis is the response spectrum analysis (RSA) carried out to study dynamic behaviors in means of top story displacement, story drift, fundamental time period, story stiffness, and story shear. The results are analyzed and made some decisions based on seismic performance. It is also observed that it is better to use the X bracing system for lateral load resisting elements.

Keywords: Step-back buildings, bracing system, hill side buildings, response spectrum method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
268 Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure

Authors: Rozilawati Binti Dollah, Masaki Aono

Abstract:

Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.

Keywords: Biomedical literature, hierarchical text classification, ontology alignment, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
267 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: Hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
266 Preparation of Metallic Copper Nanoparticles by Reduction of Copper Ions in Aqueous Solution and Their Metal-Metal Bonding Properties

Authors: Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita

Abstract:

This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO3)2), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10-3 M citric acid and 5.0×10-3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400oC and pressurizing at 1.2 MPa for 5min in H2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.

Keywords: Aqueous solution, Bonding, Colloid, Copper, Nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5618
265 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
264 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
263 Influences of Juice Extraction and Drying Methods on the Chemical Analysis of Lemon Peels

Authors: Azza A. Abou-Arab, Marwa H. Mahmoud, Ferial M. Abu-Salem

Abstract:

This study aimed to determine the influence of some different juice extraction methods (screw type hand operated juice extractor and pressed squeeze juice extractor) as well as drying methods (microwave, solar and oven drying) on the chemical properties of lemon peels. It could be concluded that extraction of juice by screw type and drying of peel using the microwave drying method were the best preparative processing steps methods for lemon peel utilization as food additives.

Keywords: Lemon peel, extraction of juice methods, chemical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
262 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions

Authors: Mohammad Reza Ghasemi, Ali Ehsani

Abstract:

In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.

Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
261 Synthesis, Characterization and Performance Study of Newly Developed Amine Polymeric Membrane (APM) for Carbon Dioxide (CO2) Removal

Authors: Rizwan Nasir, Hilmi Mukhtar, Zakaria Man, Dzeti Farhah Mohshim

Abstract:

Carbon dioxide has been well associated with greenhouse effect, and due to its corrosive nature it is an undesirable compound. A variety of physical-chemical processes are available for the removal of carbon dioxide. Previous attempts in this field have established alkanolamine group has the capability to remove carbon dioxide. So, this study combined the polymeric membrane and alkanolamine solutions to fabricate the amine polymeric membrane (APM) to remove carbon dioxide (CO2). This study entails the effect of three types of amines, monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). The effect of each alkanolamine group on the morphology and performance of polyether sulfone (PES) polymeric membranes was studied. Flat sheet membranes were fabricated by solvent evaporation method by adding polymer and different alkanolamine solutions in the N-Methyl-2-pyrrolidone (NMP) solvent. The final membranes were characterized by using Field Emission Electron Microscope (FESEM), Fourier Transform Infrared (FTIR), and Thermo-Gravimetric Analysis (TGA). The membrane separation performance was studied. The PES-DEA and PES-MDEA membrane has good ability to remove carbon dioxide. 

Keywords: Amine Polymeric membrane, Alkanolamine solution, CO2 Removal, Characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
260 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.

Keywords: Congestion pricing, demand management, flat toll, variable toll.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
259 Improving Injection Moulding Processes Using Experimental Design

Authors: Yousef Amer, Mehdi Moayyedian, Zeinab Hajiabolhasani, Lida Moayyedian

Abstract:

Moulded parts contribute to more than 70% of components in products. However, common defects particularly in plastic injection moulding exist such as: warpage, shrinkage, sink marks, and weld lines. In this paper Taguchi experimental design methods are applied to reduce the warpage defect of thin plate Acrylonitrile Butadiene Styrene (ABS) and are demonstrated in two levels; namely, orthogonal arrays of Taguchi and the Analysis of Variance (ANOVA). Eight trials have been run in which the optimal parameters that can minimize the warpage defect in factorial experiment are obtained. The results obtained from ANOVA approach analysis with respect to those derived from MINITAB illustrate the most significant factors which may cause warpage in injection moulding process. Moreover, ANOVA approach in comparison with other approaches like S/N ratio is more accurate and with the interaction of factors it is possible to achieve higher and the better outcomes.

Keywords: Analysis of variance, ANOVA, plastic injection mould, Taguchi methods, Warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3856
258 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

Authors: Yanhui Zhang, Wenyu Yang

Abstract:

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867