
 

 

  
Abstract—In this paper, the optimum weight and cost of a 

laminated composite plate is seeked, while it undergoes the heaviest 
load prior to a complete failure. Various failure criteria are defined 
for such structures in the literature. In this work, the Tsai-Hill theory 
is used as the failure criterion. The theory of analysis was based on 
the Classical Lamination Theory (CLT). A newly type of Genetic 
Algorithm (GA) as an optimization technique with a direct use of real 
variables was employed. Yet, since the optimization via GAs is a 
long process, and the major time is consumed through the analysis, 
Radial Basis Function Neural Networks (RBFNN) was employed in 
predicting the output from the analysis. Thus, the process of 
optimization will be carried out through a hybrid neuro-GA 
environment, and the procedure will be carried out until a predicted 
optimum solution is achieved. 
 

Keywords—Composite Laminates, GA, Multi-objective 
Optimization, Neural Networks, RBFNN. 

I. INTRODUCTION 

TRUCTURAL optimization is a process by which the 
optimum design is aimed while satisfying all the defined 

constraints. In recent years, using laminated composite 
materials in fabrication of mechanical, airspace, marine and 
machine industries are of major concern, due to their high 
strength and light weight. 

The multi-objective function introduced here consists of 
weight, cost and failure loading. Thus, the weight and the cost 
will be minimized while the failure load for all the laminated 
plies is to be maximized. 

The design variables could be any combination of 
thickness, orientation of fibers and the material for each layer. 
The thickness of the layers could be considered continuous 
whereas the cost and the material type for each layer to be 
discrete. Software development was then aimed for the 
analysis and the optimum design of laminated composite 
plates under any combination of design parameters. The 
process of optimization will be carried out through a hybrid 
neuro-GA environment, and the procedure will continue until 
a predicted optimum solution is reached. 

   The most common basis of the RBF is a Gaussian kernel 
function. The name RBF comes from the fact that these 
Gaussian kernels are radially symmetric; that is, each node 
produces an identical output for inputs that lie a fixed radial 

 
 

distance from the centre of the kernel. Having linked the 
RBFNN to the optimizer, a number of problems were then 
attempted, and recorded. Verification of the results indicate 
that composite laminates with a considerably reduced weight 
and cost may resist very large loads, and that neural networks 
have a major role in reducing time of optimization process.  

II. MULTI-OBJECTIVE OPTIMISATION 

Multi-objective optimization is a process by which a vector 

of design parameters like [ ]**
2

*
1

* ,,, nxxxx …=  will be seeked 
so that it satisfies m inequality constraints 0)( ≥xgi and p 

equality constraints 0)( =xh j  while optimising an objective 

function [ ]Tnxfxfxfxf )(),(),()( 21 …= . In this paper, the goal is 
to minimize weight and cost of a laminated composite plate 
while maximizing its failure load. Therefore a multi-objective 
optimization process will be carried out such that 

[ ])(),(cos),()( xdfailureloaxtxweightxf =  .  

III. ANALYSIS OF LAMINATED COMPOSITE PLATES 

Composite laminates are considered as orthotropic 
materials. An orthotropic body has material properties that are 
different in three mutually perpendicular directions at a point 
in the body and, further, have three mutually perpendicular 
planes of material symmetry. Thus, the properties are a 
function of orientation at a point in the body. Because of their 
low thickness sizes, they can be modeled as shells.  

A. Strain-Stress Relations in an orthotropic material 
the lamina in the 1-2 plane of Figure (1), a plane stress state 

is defined by setting 
03 =σ          023 =τ          031 =τ                                        (1) 

Thus, using (1), strain-stress relations can be formulated as in 
(2) 

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

12

2

1

66

2212

1211

12

2

1

00
0
0

τ
σ
σ

γ
ε
ε

S
SS
SS

                                                (2) 

A Hybrid Radial-Based Neuro-GA 
Multiobjective Design of Laminated Composite 

Plates under Moisture and Thermal Actions 
Mohammad Reza Ghasemi, Ali Ehsani 

S 

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:1, No:4, 2007 

56International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
16

69
.p

df



 

 

 
Fig. 1 Unidirectional reinforced lamina. 
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B. Stress-Strain Relations for a lamina of arbitrary 
orientation 

For a set of lamina that is in x-y plane and it's principal 
directions are in 1-2 plane as in Figure(2), using 
Transformation matrix, the stress relation is 
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where [ ]T  is the Transformation Matrix. 
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Similarly the strain relation will be obtained as 
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Fig. 2 Positive rotation of principal axes from arbitrary x-y axes. 

 
However, if the matrix R is defined as  
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using (4) to (7), it will lead to the following relation. 
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Assigning [ ] [ ][ ][ ] 1−− = RTRT T and [ ] [ ][ ] TTQTQ −−=⎥⎦
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will lead to the following relation 
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where
_
Q is the transformed stiffness matrix [1].  

 

C. Strength of an Orthotropic Lamina 
Strength of a lamina is depended on fiber material the 

matrix and its fiber angle. In composite laminates we have 
three principal strengths, as shown in Figure (3), namely X as 
the axial or longitudinal strength, Y the transverse strength 
and S as the shear strength. 

 
Fig. 3 Definition of fundamental strengths for unidirectional 

lamina. 

 

If the material has unequal properties in tension and 
compression as do most composite materials, then the 
following strengths are required: 

tX = axial or longitudinal strength in tension, cX = axial 

or longitudinal strength in compression, tY = transverse 

strength in tension, cY  = transverse strength in compression 
and S = shear strength. 

D. Tsai-Hill Theory 
In this theory for orthotropic materials we have the relation 
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Ifσ is in compression, one should use cX and cY , otherwise 

tX  and tY  will be used. 
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E. Loads and Moments of Laminated Plates 
Using Integration over thickness of a layer, Moments and 

Loads for each layer can be computed. Equation (11) shows 
the leading relation concluded: 
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where { }xyyx NNNN ,,=  and { }xyyx MMMM ,,=  are 

loads and moments vectors. 0ε and κ are strain and curvature 
of middle plane, respectively. [ ]A  is extensional stiffness 

matrix, [ ]B  is coupling stiffness matrix and [ ]D  is bending 
stiffness matrix. 

F. Environmental Effects 
Environmental effects change strength and stiffness of 

laminates and the matrix. In this paper two of the most 
important effects which are considered, are the thermal and 
moisture effects. 

   1.Thermal effects: If thermal changes are taken into account 
in layers, thermal loads and moments shown in Eq. (12) 
should be subtracted from (11) 
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where z  is the momental distance from the corresponding 
layer to the symmetrical plane. TΔ  is temperature difference, 

xα  and yα  are coefficients and xyα  is shear coefficient of 
thermal expansion. 

     2. Moisture effects: Assigning cΔ  as moisture difference, 
similarly one can conclude that 
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Having completed formulations for the analysis, in the next 
section, the optimization technique used in this study, based 
on Genetic Algorithm, will be defined. 

G. Developed Analysis Program 
In this study, the analysis program, emphasizing on the 

moisture and thermal effects, was developed. The validity of 
the developed program was also compared and well matched 
with the commercial program LAMINATOR. 

There after, the idea was to determine the failure load by 
which all the layers one by one fail to respond. In this case, 
one can simply say that the maximum failure load is met. 
Figure (4) issues the above statement graphically. 

 

    
Fig. 4 Analogy between buckled plate and laminate load-deformation 

behavior. 
 

IV. GENETIC ALGORITHM 

In this research we use Genetic Algorithm (GA) for a multi-
objective optimization of composite laminates, where weight, 
cost and failure loads for the laminated composite plates are 
interconnected. The design parameters are angle of fibers (θ ), 
layer thickness sizes (t) and material types (M) for each layer. 

A. .Mathematical Model 
1. Objective Function:  The multi-objective function used 

contains three major terms as in (14): 
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where ϕ  is the goal function, W is weight of all layers, 

maxW is maximum weight that layers can possess, C is cost of 

all layers, maxC is maximum cost that layers may contain, 

xyyx MNN ,,, …  are failure loads and moments for all 

layers,
maxmaxmax ,,, xyyx MNN … are the maximum failure loads 

and moments, and  nl  is number of loads applied to the 
structure. For example if only xN  and xM  applied to the 
plate, then nl =2. 

Computation of the fixed value maxW was made by choosing 
maximum thickness and heaviest material for all layers. 
Similarly, maxC was computed by assigning the maximum 
thickness, and relatively most expensive materials for all 
layers which according to the list available in Reference [5], it 
will be the case when  45=θ .  
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And finally calculation of 
maxmaxmax ,,, xyyx MNN … , will be 

set by choosing maximum thickness, strongest materials and 
adapted θ  with location of loads and moments. 

2. Constraints: To enable a rather faster convergence to the 
optimum solution, some constraints are introduced. Thus, after 
the process of analysis of each individual belong to each 
generation, if any of the designs had failure loads and 
moments less than 15% of maximum computed loads and 
moments or being heavier than 45% of maximum weight or 
even found to be more expensive than 45% of maximum cost 
of the plate, they will not be allowed to breed and will 
automatically be replaced by another randomly generated 
individual which satisfies all the constrains as listed in  (15): 

 

max)(15.0)( dFailureLoadFailureLoa ipop ≥   

max)(15.0)( entFailureMomentFailureMom ipop ≥  

max)(45.0)( WeightWeight ipop ≤                                        (15) 

max)(45.0)( CostCost ipop ≤  

 

where the subscript ipop indicates one design of a 
population, and the subscript max refers to the maximum 
possible value of that parameter.  

 

B. Genetic Operators 
There are available catalogue lists of 12 fiber angles, 13 

layer thicknesses and 15 material types where the three 
different design variables are chosen from. They are listed in 
the tables I, II and III. 
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Fig. 5 sample Design 
 

Figure (5) shows one sample design of a generation. 
Columns one, two and three of this design, correspond toθ , t 
and M, respectively. This design has 4 rows and it means that 
there are 8 layers available for this design. That is because of 
symmetry, which means there are only four layers to be 
shown. Numbers in this matrix must change using tables I, II 
and III.  For exampleθ , t  and M for layer 2 of this design is 
60 deg. , 0.1cm and AS4/5250-3, respectively. 

TABLE I 
CATALOGUE LIST OF FIBRE ANGLES 

θ  1 2 3 4 5 6 

deg 0 15 30 45 60 75 

θ  7 8 9 10 11 12 

deg 90 -15 -30 -45 -60 -75 

 
TABLE II 

CATALOGUE LIST OF LAYER THICKNESSES 
t 1 2 3 4 5 6 7 

cm 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

t 8 9 10 11 12 13 

cm 0.2 0.22 0.24 0.26 0.28 0.3 

 
 

TABLE III 
CATALOGUE LIST OF MATERIAL TYPES 

M Material name 

1 T300/5208 

2 T300/934 

3 T300/976 

4 AS/3501 

5 AS4/3501-6 

6 AS4/3502 

7 AS4/APC2 

8 AS4/5250-3 

9 Generic IM6 

10 IM6/APC2 

11 Generic E-Glass 

12 Generic S-Glass 

13 S2-499/SP 

14 Generic Kevlar 

15 GY70/934 

 

1. Mating Pool: After generating the first population, and 
having analyzed each of the individuals, the obtained 
objective values will be sorted. They are then credited with 
respect to their validities. For the purpose of carrying the 
genetic operations then, a mating pool is generated. The 
procedure of generating the mating pool is such that  
100% individuals in the mating pool=the first 50% of  total + 
the first 20% of  total+ the first 10% of  total+ random 20% of 
the remaining individuals.  

Therefore there will be 100% individuals in the mating 
Pool. Now, in order to proceed with creation of new 
generations towards better designs, genetic operations take 
place.  

2. Selection: Due to a specific type of creating a mating 
pool, selection operator is carried out quite randomly where 
the credits to better designs were already given in generating 
the mating pool. However, out of a 100% individuals in a 
generation there are only 10% of the new generation to be 
created through selection. 
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Fig. 6 Cross-over for thickness of the layers  

(a): two sample parents     (b): children 

3. Cross-over: Since the algorithm introduced in this study 
deals with real variables, which are themselves of three 
different types (θ , t and M), therefore, there will only be 
three positions for the cross-over to take place. Thus, when 
two designs are selected from mating pool, they may 
randomly exchange theirθ , t or M. Figure (6) demonstrates 
the exchange of the second type of the design variables, as a 
result of which children are created. However, out of a 100% 
individuals in a generation there are only 30% of the new 
generation to be created through cross-over.   

 
4. Mutation: This type of genetic operators is carried out 

similar to Cross-over. However, as indicated in Figure (7), in 
case of the thickness of the layers to mutate, within their 
catalogue range they will be randomly changed, as a result of 
which new children are created. However, out of a 100% 
individuals in a generation there are 60% of the new 
generation to be created through mutation.   

 
Fig. 7 Mutation for thickness 

  (a): before Mutation      (b): after Mutation 

V. ARTIFICIAL NEURAL NETWORKS 
The design of Neural Network (NN) has been inspired by the 
biological research on how the human’s brain works. The 
brain is a network consisting of approximately 2.5 billion 
simple processors, called neurons, connected to one another 
through branchlike structures called axons and dendrites (see 
Figure8). Synapses connect the axons and dendrites of one 
neuron to those of another. The objective of NN is to mimic 
the neurons in the brain by linking together many simple 
processors, called Artificial Neurons or Nodes. Variable 
strength connections, called weights, implement the biological 
synapses [4], [8]. 

 
The main objective in neural model development is to find 

an optimal set of weight parameters w  such that 
),( wxyy =  closely approximates the original problem 

behavior. This is achieved through a process called training. 
During training, the neural network performance is evaluated 
by computing the difference between actual NN outputs and 

desired outputs for all the training samples. The difference is 
also known as the error. The weight parameters w  are 
adjusted during training, such that this error is minimized. The 
technique by which the training phase is processed is called 
back propagation, a detail of which is given in [6], [8]. 
However, in the following sections some detail of new type of 
neural network techniques namely RBF will be described. 

 

 
Fig. 8 The structure of a biologic neuron 

 

A. Radial Basis Function Neural Networks 
Radial Basis Function is a function which depends only on 

the radial distance from a point. This type of NN consists of 
three layers. The first layer is called the input layer. Number 
of neurons in this layer equates number of elements of the 
input vector. The second layer is known as the hidden layer. 
Each neuron of this layer is affected by a Gaussian activation 
function, results of which are transferred to the third layer, 
namely the output layer. Since the latter is influenced by a 
linear activation function, it is also referred to as the linear 
layer. Since the curve of Gaussian activation function in the 
hidden layer is radially symmetrical, neurons in the hidden 
layer are therefore called neurons of Radial Basis Function 
(RBF). Also, since the essence of this network operation is 
pawned to the neurons in the hidden layer, this type of 
artificial NN is known as RBF network. 

Figure 9 shows the architecture of a simple neuron of RBF 
network in hidden layer. 

 

 
Fig. 9 RBF networks architecture and a simple neuron [9]. 

 

During the process of network training, the modifiable 
parameters and weight matrix of the output layer change in 
quantity such that the mean error between desired outputs and 
those of the network reach a permissible value [4], [7].  

As indicated in Figure (9), a RBF neuron in hidden layer 
consists of three blocks: 

1. dist  block. This block determines the distance 
between input vector P and its weight vector W, so that 
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i ii pWD
1

2)(                                                  (16) 

where R is number of components of P and W. Now if P 
applies to a RBF network, then R would equate number of 
columns of weight matrix. 

2. Cross Block: In this block, output of dist  being a 
value, will be multiplied by the bias of a neuron. Bias, is a 
weight itself which is compared with a weight that transfers a 
constant input value one to the cross block. 

3. radbas Block: The output of cross block is used as an 
input to the Gaussian basis function. The maximum value of 
this function being equal to one, appears when its input is 
equal to zero. This occurs when input vector to the neuron and 
weight vector match very closely in value. Thus, an increase 
in the distance between these two vectors causes a quick 
reduction on the value of radbas. This function uses the 
following relation in its computations: 

2nea −=                                                                              (17) 

Using bias b in cross block, adjusts the sensitivity of RBF 
neuron to the parameter D  in (16). For instance if the bias for 
a RBF neuron had a value of 0.1, it would output 0.5 for any 
input vector P at vector distance of 8.326 (0.8326/ b ) from its 
weight vector W. This is because n and radbas( n ) would be 
computed as follows: 

                                    
 5.08526.01.0*326.8*376.8 =→==→= radbasnbn       (18) 

Therefore the major role of the bias in RBF neuron is to 
increase the network generalizing ability. 

VI. OPTIMIZATION NETWORKS 

In the present research, training of a neural network 
requires provision of solutions to a number of laminated 
plates. Note that all the individuals in generations should 
satisfy all the constraints. Otherwise they will be replaced by 
other randomly generated and valid individuals. The 
optimization procedure can be detailed in two stages. First, to 
train the RBFNN network, the best 30 percent of the total 
population of the analyzed first generation are transferred to 
the network through a linkage to the MATLAB software 
environment. Obviously, for each sample, the values of the 
design variables are considered as one set of input data to 
enter the NN and its corresponding loads and moments, as the 
reference output to the NN for that sample. 

Having completed the first stage of the algorithm, the 
second stage is to verify the validity of the trained network. 
Thus, a new design of the remaining 70% individuals of the 
first generation is randomly chosen and is verified by the 
network. In case the outcome is not within the accepted range, 
the best 10% population of the second generation is then 
added as training samples to the network, for which it should 
be trained. This process will be continued until the error on 
the results is minimized to the accepted value. Thereafter, the 

analysis will automatically be carried out through the trained 
network.  

In the following section some examples will be presented, 
results of which involve the multi-objective optimization of 
composite plates using a hybrid merging of GA with RBFN.  

VII. EXAMPLES 

A. Example (1) 
This example is a laminated plate with 9 layers, four of 

which are symmetrical as shown in Table IV.  The plate is 
under a distributed yN loading. As stated in Section VI, the 
training of the network was completed in the fifth generation, 
after which the analysis was carried out using RBFNN and at 
the same time using the developed analysis software. This was 
made in order to enable a comparison of the two procedures as 
shown in Figure (10). 
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Fig. 10 Comparison between RBFNN and Analysis in solving 

example (1) 
 

The optimum solutions obtained using RBFNN are listed in 
Table IV which shows that at least the optimum θ  and 
M match those anticipated.  

 
TABLE IV 

PARAMETERS OF OPTIMISED LAMINATES FOR EXAMPLE (1) 
Layer no. Angle (degree) Thickness(cm) Material 

1(9) 90 0.28 Generic IM6 

2(8) 90 0.10 Generic IM6 

3(7) 90 0.08 Generic IM6 

4(6) 90 0.08 Generic IM6 

5 90 0.08 Generic IM6 

Optimum solutions 

yN =3481960 mkg  Weight=11.2 3mkg  Cost = 8.09 U 
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B. Example (2) 
This example is a laminated plate with 12 layers, six of 

which are symmetrical as shown in Table V.  The plate is 
under distributed xN  and xM  loading where xN = 2 xM . 

Also there is a temperature change of C15+ for all the 
layers. The training of the network was completed similar to 
Example (1). The optimum solutions were obtained then by 
setting the trained RBFNN as the analyzer. For the means of 
comparison, the same individuals in all generations were also 
analyzed the developed analysis program. Figure (11) shows 
the comparisons made. 
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Fig. 11 comparison between RBF and Analysis in solving 

 Example (2) 
 

Table (V) shows the parameters of optimized laminated 
plate. 

TABLE V 
PARAMETERS OF OPTIMISED LAMINATES FOR EXAMPLE (2) 

Layer no. Angle 
(deg) 

Thickness (m) Material 

1 (12) 0 0.0022 Generic IM6 

2 (11) 0 0.003 Generic IM6 

3 (10) 0 0.0006 Generic 
Kevlar 

4 (9) 0 0.0006 Generic 
Kevlar 

5 (8) 0 0.0006 Generic 
Kevlar 

6 (7) 0 0.0008 Generic 
Kevlar 

Optimum solutions 

xN =16175 mkg  xM =8087 mmkg /.  T
yN =7180 mkg  

Weight=16.6 3mkg  Cost = 9.95U 

 

C. Example (3) 
   This example is a laminated plate with 7 layers, three of 
which are symmetrical as shown in Table VI. Thus, the plate 
is symmetrical about its mid layer.  It is under the effect of a 
10% moisture change. Different to previous examples, here, 
increase of failure load is not of concern; however, the 

objective is to minimize the loads due to moisture, while 
minimizing weight and cost. Here, similar to example 2, the 
plate boundary conditions are such that, by changing the 
moisture percentage, only forces M

xN , M
yN and M

xyN will be 

exerted to it. Therefore, the objective function will be needed 
to change and therefore modified to the following form: 

 

 

 
 
 

                                                                                                (19) 

 
Maximum loads on denominators of Eq. (19) are not failure 
loads, but the maximum moisture loads in a 7-layered plate. 
Table VI Lists values for these loads. The loading constraint in 
this example has been set to 0.2.  Thus, the moisture loads are 
constrained not to alleviate 20% of the maximum moisture 
load. These coefficients and percentages may differ depending 
on the application and other administrative purposes.  
Since the angle of orientation of the laminates could be ±45, 
the maximum load may also include positive or negative 
values. Therefore, the absolute value of the force will be 
accounted for while computing the objective function. 
Since the failure load is not needed in this example, for 
optimization process only genetic algorithm and the analysis 
of moisture loads were employed.  
Having run the problem, using a population size of 75, as 
indicated in Figure 12, a convergence for the objective 
function has occurred after 23 generations. Note that, in the 
process of optimization, if the moisture load reaches or 
exceeds the failure load, it will be deleted prior to genetic 
operations. 
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Fig. 12 A convergence history of the multi-objective variations with 

generations for Example (3). 
 

Table VI indicates the optimum values obtained for the weight 
and cost of Example 3. This example may again be regarded 
as a benchmark example, since there was no source of 
reference available in the literature.  
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TABLE VI 
PARAMETERS OF OPTIMIZED LAMINATES FOR EXAMPLE (3) 

Layer no. Angle 
(deg) 

Thickness (cm) Material 

1 (7) 30 0.08 T300/976 

2 (6) 30 0.08 T300/976 

3 (5) 90 0.08 T300/976 

4 30 0.08 Generic 
Kevlar 

Optimum solutions 

M
xN =195306

mkg  

M
yN =198608

mkg  
M
xyN =-64646 mkg  

Weight=5.5937 3mkg  Cost = 5.3735 U 

VIII. CONCLUSIONS 

With regard to the thermal and moisture effects on the 
analysis of composite laminates, the analysis program 
developed well matched that in the literature. 

Also, the new Genetic Algorithm introduced here to handle 
real variables and to deal with multi-objective functions, 
resulted on a fast and global convergence of the optimum 
solution, as for such examples on composite laminates, in 
particular for example 1, it is rather simple to anticipate the 
solution. It was also shown that by emphasizing more on the 
role of mating pool, one can reduce selection contribution in 
the genetic operations.   

Involving RBF Neural Networks as to predict and cover for 
the analysis, it concluded in closely satisfied comparisons for 
both examples attempted. This investigation closely validates 
the clear power of neural network techniques in solving 
laminated composite plates.  

Therefore, regarding a reasonable accuracy of the results 
performed using RBFN networks; it is possible to produce 
software that could promptly expose the optimum without a 
need to analyze the structure. This is particularly effective 
where a very quick response to the problem is vital. 
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