
 

 

  
Abstract—One of the difficulties of the vibration-based damage 

identification methods is the nonuniqueness of the results of damage 
identification. The different damage locations and severity may cause 
the identical response signal, which is even more severe for detection 
of the multiple damage. This paper proposes a new strategy for 
damage detection to avoid this nonuniqueness. This strategy firstly 
determines the approximates damage area based on the statistical 
pattern recognition method using the dynamic strain signal measured 
by the distributed fiber Bragg grating, and then accurately evaluates 
the damage information based on the Bayesian model updating 
method using the experimental modal data. The stochastic simulation 
method is then used to compute the high-dimensional integral in the 
Bayesian problem. Finally, an experiment of the plate structure, 
simulating one part of mechanical structure, is used to verify the 
effectiveness of this approach. 
 

Keywords—Bayesian method, damage detection, fiber Bragg 
grating, structural health monitoring. 

I. INTRODUCTION 
HE nonuniqueness of the results of damage identification 
is the one of the difficulties of the vibration-based damage 

identification methods. The different damage locations and 
severity may cause identical response signal. This problem is 
even more severe for the detection of the multiple damage. The 
reason is that, the number of the measured points in real 
application is limited and only the limited modes could be 
estimated. Furthermore, the modelling error and the 
measurement noise is usually inevitable, some erroneous 
modes could have modal parameters closer to the estimated 
modal parameters than the model with the correct damage 
locations and amount [1].  

By explicitly considering the modelling error and the 
measurement noise, Bayesian model updating approach is an 
excellent way to model prediction error and provide the 
uncertainty information of the damage identification results [2]. 
Based on the Bayesian formula, Bayesian model updating 
approach could incorporate the engineering judgments, the 
mathematical models and the measured data together to make 
robust identification for damage. The results of damage 
identification are expressed though the post probability density 
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function (PDF), rather than pinpointing a single solution in the 
traditional deterministic approach. The post PDF quantifies the 
confidence level of the identified results, which usually 
provides an important reference for maintenance decision. 

The fiber Bragg grating (FBG), considered to be a promising 
technology, has been increasingly applied to the SHM process. 
FBG has several advantages, such as immunity to 
electromagnetic interference, high sensitivity, light weight, and 
so on. The excellent multiplexing capability of the FBG 
facilitates its use as a distributed sensor system, which not only 
monitors the local key parts of the structure but also captures 
the overall dynamic information. Panopoulou et al. [3] 
developed a complete damage detection system using FBGs. 
The dynamic strain response data from the FBG is first 
measured, then the feature indices are extracted by various 
signal processing methods, and finally an artificial neural 
network is utilized to detect and locate damage. This system has 
been demonstrated by a thin composite panel and a honeycomb 
structure and is planned for use in a future application of an 
antenna reflector. 

This paper uses the distributed FBG as the sensor network 
and proposes a new strategy for damage detection though two 
steps, which firstly estimate the approximate damage area from 
the dynamic strain signal using the statistical pattern 
recognition method, and then accurately evaluates the damage 
based on Bayesian model updating method using experimental 
modal data. Lastly, the stochastic simulation method is used to 
solve the Bayesian computation issue and generate the samples 
of the damage parameters identified. 

The following paper is organized as follows. Section II 
summaries the new damage detection strategy. Section III is the 
experimental verification section: firstly describes the 
experimental apparatus and procedures, and then presents the 
detection results of Step 1 and Step 2, respectively. A few 
conclusions are discussed in Section IV. 

II.  THEORETICAL BACKGROUND 
A. New Damage Identification Strategy 
The traditional damage detection methods for SHM can be 

classified into model-based method and non-model-based 
method [4]. Here, the “model” refers as the physical model of 
the real mechanical or civil structure. The non-model method 
usually directly uses the signal processing or statistical method 
to determine whether the damage occurs. This method is simple 
and straightforward, but helpless for quantifying the damage, 
such as the size, orientation and trends of the crack. 
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Alternatively, the model-based method requires an accurate 
physical model and could quantify the damage but on the cost 
of intensive computation. 

Absorbing both advantages of the non-model method and the 
model-based method, a new damage detection strategy is 
proposed based on FBG and Bayesian model updating method. 
This process consists of the following two phases. (1) Roughly 
estimate damage area based on the distributed dynamic strain 
signal with the recognition accuracy of the gage lengths of FBG 
without a detailed analytical model. (2) Accurately identify the 
size, direction and depth of the damage with the recognition 
accuracy of the accuracy of the physical model based on 
Bayesian model updating method. The details of the process are 
showed in Fig. 1. 

 

 
Fig. 1 Detailed process of the new damage detection strategy 

 
Based on the strain measurement, the dynamic strain 

response of FBG is more sensitive to the local small damage 
than the traditional displacement or acceleration measurements. 
But the environmental and operational variations, such as the 
change of temperature, usually disguise the signal variation 
induced by damage and cause the false-positive indication. So 
in Step 1, the dynamic strain signal is decomposed into the 
damage-sensitive signal component using the Hilbert-Huang 
Transform (HHT) method, the autoregressive (AR) model is 
then used to exact damage sensitive features, and lastly the 
Mahalanobos distance-based method is used to determine the 
approximate damage area, named as the damage suspicious 
region. But the identification accuracy of this region is low, 
because that is mainly affected by the grating length of FBG 
and the layout density of the sensor network. 

In Step 2, the Bayesian model updating method is further 
used to identify the detailed damage parameters. The damage 
parameters are identified only from the damage suspicious 
region of Step 1.  

There are several advantages for this new damage 
identification strategy. First, the number of the parameters to be 
identified has been reduced, which make the cost of the 
computation greatly drop. Second, the search targets of the 
damage identification only focus to the damage suspicious area, 
rather other the entire structure. The “output-equivalent” issue 
in the damage mechanism modelling can be effectively 
relieved, which refer to the problem that different damage 
assumes may produce identical out parameters [1]. 

B. Bayesian Model Updating Framework 
Assume the damage could be expressed by the reduction of 

the element stiffness, but independent from the element mass. 
Therefore, introducing the parameter vector θ = [θ1, ..., θi, ..., 
θN], which represents the contribution of the element stiffness 
to the system stiffness matrix, the system stiffness matrix K can 
be written as: 

 

0
1

( )
N

i i
i

Kθ
=

= + ∑K θ K                             (1) 

 
where N is the degrees of freedom (DOFs) of the linear discrete 
system, θi (0 < θi < 1) is non-dimensional, and the smaller the 
size of θi , the more serious the damage of element, other words, 
deeper the crack. The combination of adjacent damage element 
constitutes the shape and direction of the crack. Obviously, the 
accuracy of crack identification depends on the sizes of finite 
elements which can be controlled artificially but usually at the 
cost of the computation effort [5]. 

Based on Bayesian theorem, when given the measured data 
D and the probabilistic models M, the post PDF of θ can be 
expressed as: 

 
( | , ) ( | , ) ( | )p M cp M p M=θ D D θ θ                (2) 

 
where c is a normalizing constant, p(θ| M) is the prior PDF of θ, 
and p(D| θ, M) is the likehood function. Because that the 
measured modal frequency usually has the more precision than 
the other modal parameters. Moreover, the most algorithms 
including the mode shapes have to deal with the problems of the 
finite element (FE) model reduction or mode shape expansion 
to bridge the gap between the real structure and the simulated 
model. So the modal frequencies are used to construct the 
likelihood function, assume the Nm (≤ N) modes of natural 
frequency are considered here: 
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where ∑ is the variance matrix of the measured modal 
frequency, Ns is the number of the measured modal frequency 

sets, ψ is the measured modal frequency of the monitoring 
structure under unknown health status, and the ψ(θ) is 
computed modal frequency of the FE model. 

The computation of the high-dimensional integral in the 
Bayesian method is difficult and has attracted the attention of 
many researchers over the decades. Several improved 
stochastic simulation methods have been developed to solve the 
high-dimensional and complex posterior PDF, such as the 
adaptive Metropolis-Hastings (AMH) [6], the transitional 
Markov chain Monte Carlo (TMCMC) [7], the Hybrid Monte 
Carlo (HMC) [8], and so on. Inherited from the AMH that 
introduced a series of intermediate PDFs, the TMCMC can not 
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only automatically select the intermediate PDFs but also 
conveniently evaluate the evidence in the Bayesian model class 
selection. However, the proposal distribution of the TMCMC is 
the random walk of Gaussian distribution, which cannot 
explore the local properties of the posterior PDF well. So the 
slice sampling is used as the algorithm of the candidate value 
for TMCMC, which is named as TMCMC-slice.  

The improved TMCMC-slice algorithm, which has 
integrated the advantages of the TMCMC and slice sampling 
method, is used to generate the sample of the unknown 
parameters. Based on slice sampling, the generation of the 
candidate value can automatically adapt to the local features of 
the post PDF with fewer user-adjusted parameters. Though the 
gradually transitioning from the prior PDF to the post PDF, 
TMCMC can easier sample from the intermediate PDFs than 
other methods. And the ratio of Metropolis-Hasting in each 
iteration step could make the sample concentrate the region of 
high probability, which improves the convergence properties of 
the TMCMC-slice algorithm. 

III. EXPERIMENTAL VERIFICATION 

A. Experimental Apparatus and Procedure 
A 304 stainless steel plate, which is attached by four bolts on 

a support, was used to simulate one part of the mechanical 
structure. The geometric parameters of the plate are 500 mm by 
500 mm and 3 mm thick. Twenty-nine gratings were bonded on 
the surface of the plate according to the symmetry of the 
structure. These gratings were assigned to four individual fibers 
in order to facilitate wiring, and then connected with the four 
channels of the optical demodulator produced by the Micron 
Optics Inc. The sampling rate of the FBGs was set to 2 kHz. 
There were also 15 accelerometers to monitor the modal 
parameters of the structure. The sampling rate of the 
accelerometer was also set to 2 kHz. The arrangement of the 
FBGs and accelerometers sensor network is shown in Fig. 2. 

Providing the excitation for the plate structure, a vibration 
exciter was attached to the center of the plate using a screw with 
a 3mm diameter. This vibration exciter was controlled by the 
LMS modal testing system, which produced the 0~8 kHz 
broad-band stochastic excitation.  

 

 
Fig. 2 Layout of the FBG and accelerometer sensor network 

 
The structural defect usually appears in most mechanical 

structures because of stress concentration, fatigue, or corrosion. 
Therefore, the experiment here was mainly designed to identify 
this form of damage. The structural defect was simulated by a 
notch at different depths, which was directly machined on a 
milling machine, as shown in the upper left corner of Fig. 3. 
Based on the severity of the damage, there were four groups. 
The first group represents the baseline health state without any 
defect; the second group induces a defect whose size is 46 mm 
by 48 mm with a depth of 1.5 mm (50% thickness), as shown in 
the yellow region of Fig. 2. In the third group, the size of the 
defect remains the same, but the depth is increased to 2.4 mm 
(80% thickness). Finally, in the fourth group, the defect is 
completely though the plate (3 mm depth). The torque of the 
four bolts connecting the plate and the support was 80 Nm, 
which was strictly controlled by the torque wrench in each 
experimental group. The image of the experimental real objects 
can be observed in Fig. 3, and the details of the different health 
states simulated are summarized in Table I. 

 

 
Fig. 3 Picture of the experiment 

 
TABLE I 

DETAILS OF DIFFERENT HEALTH CONDITIONS 
State Label Description 

Health state State 1 Baseline state, no defects 
Damage state 1 State 2 Defect size: 46mm × 48mm × 1.5mm 
Damage state 2 State 3 Defect size: 46mm × 48mm × 2.4mm 
Damage state 3 State 4 Defect size: 46mm × 48mm × 3mm 

B. Detection Results of Step 1 
For each damage state, 50 sample records are collected as 

damage identification according to the periodicity 
characteristics of the response signal. In Step 1, the dynamic 
strain signal from FBG is first decomposed into several 
intrinsic mode functions (IMFs), then the AR-based model is 
applied on the second level IMF component to extract the 
damage sensitive features and Mahalanobis distance-based 
pattern classification method are used to detect and locate 
damage. Here the sample sets from State 1 (health state), State 2 
(damage state 1), State 3 (damage state 2), and State 4 (damage 
state 3), totally 200 samples, are used for damage identification. 
These samples are divided into two parts. One is the first 25 
samples of State 1 as the training sample set. Another is the test 
sample set composed of the later 25 samples of State 1 and the 
remaining three damage states, totally 175 samples. The 
identification results of the channel 19, 26, 27 and 28 are shown 
in Fig. 4, in which the blue bar indicates that no damage 
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occurred, the red bar means the damage, and the green 
horizontal line is the threshold which is calculated assuming 
that the distribution of the square of the Mahalanobis distance is 
chi-square distribution with the DOFs equal to the AR model 
order. 
 

 
Fig. 4 Results of damage detection and location in channel 19, 26, 27 

and 28 
 

There is no damage occurred when the number of blue-bar is 
larger than the red-bar in each state, otherwise, the damage 
appears. Observing the amount of the red bars, the number of 
the red bars in the channel 19, 27, and 28 is large, so the 
conclusion is that the approximate location of the damage is 
near the position of the channel 19, 27, and 28, but lacking 
more detailed information, such as the direction, size and 
severity about the damage. So next the Bayesian model 
updating method is used to identify the specific parameters of 
the damage. 

C. Detection Results of Step 2 
In order to identify the damage parameters, the plate 

structure is divided into the 100 rectangular elements of 10 by 
10. Then the non-dimensional parameter, representing the 
contributions of the element stiffness to the system stiffness 
matrix, is introduced to model the damage. Based on the 
detection results of Step 1, only the six parameters near the 
damage approximate area, θi (i = 1, 2, …, 6), are updated in 
Bayesian model updating method of Step 2.  

A precise model is required before applying Bayesian model 
updating method for damage identification, so the FE model is 
refined to minimize the model error by conducting a series of 
parametric analysis. 

The experimental modal frequency is firstly identified by the 
LMS modal analysis software using the acceleration signal. 
Here the results of State 1 (health state), State 2 (damage state 
1), State 3 (damage state 2), and State 4 (damage state 3) are 
shown in Table II. 

 
TABLE II 

 MODAL FREQUENCY OF THE HEALTHY AND DAMAGE STATES 
Mode State 1 (Hz) State 2 (Hz) State 3 (Hz) State 4 (Hz) 

1 40.9330 42.4120 42.3030 41.9960 
2 137.4630 135.9660 135.6860 134.9330 
3 307.7550 304.8220 305.3790 301.6580 
4 436.2560 436.2100 432.7160 430.4220 
5 690.2900 683.8950 674.1470 679.2060 
6 806.7520 803.8900 802.2440 808.0970 

The geometric parameters of the plate are accurately 
measured as 515 mm by 515 mm and 2.95 mm thick. The 
density of the 304 stainless steel is 8150 kg/m3, the Modulus of 
Elasticity is 189 GPa, and the Poissons ratio is 0.285. The 
four-node rectangular element is used in the FE model, and the 
size of the grid element is 51.5 mm by 51.5 mm. The nodes of 
the elements located in four corners are fully constrained to 
simulate the bolt constraint. The comparison of the modal 
frequency between the FE model and the actual undamaged 
plate is shown in Table III.  

 
TABLE III 

COMPARISON OF THE MODAL FREQUENCY BETWEEN FE MODEL AND ACTUAL 
PLATE 

Mode Test(Hz) FEM(Hz) Diff(%) 
1 40.9330 40.9361 0.0076 
2 137.4630 140.5776 2.2658 
3 307.7550 315.8144 2.6188 
4 436.2560 427.5859 -1.9874 
5 690.2900 703.1238 1.8592 
6 806.7520 809.1443 0.2965 

 
Although the refined FE model is close to the actual 

structure, the model error is modelled a Gaussian process. Then 
the post PDF is constructed according to the Bayesian theorem. 
The posterior samples of the damage parameters θi are 
generated using the stochastic simulation method based on 
TMCMC-slice sampling.  

The damage identification results of the TMCMC-slice 
algorithm are checked. The statistics of the sample are shown in 
Table IV, where column 1 is the actual values of the 
parameters, column 2 shows the identified sample mean, 
column 3 shows the sample standard deviation (s.d.), and 
column 4 displays the coefficient of variance (c.o.v.). 

 
TABLE IV 

RESULTS OF DAMAGE IDENTIFICATION FOR PLATE STRUCTURE BASED ON 
TMCMC-SLICE 

 Actual Identified s.d. c.o.v. 
θ1 1.0000 0.9950 0.7742 0.7781 
θ2 0.5000 0.5181 0.2100 0.4053 
θ3 1.0000 2.6051 1.5647 0.6006 
θ4 1.0000 0.9500 0.8905 0.9374 
θ5 1.0000 0.6889 1.4918 2.1655 
θ6 1.0000 0.9771 0.9996 1.0231 

 
The result of the TMCMC-slice method is satisfactory, only 

the identified values of θ3 and θ5 are deviate from the actual 
values, but the corresponding standard deviation (s.d.) and 
coefficient of variance (c.o.v.) are also large, which denote that 
the results have lower credibility. 

Then the sample updated trajectory and probability density 
distribution are respectively used to further analysis the 
performance of TMCMC-slice, as shown in Fig. 5 and Fig. 6. 
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