Search results for: stochastic optimization
1360 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041359 The Optimization of Engine Mounting Parts Using Hot-Cold Forging Technology
Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim
Abstract:
The purpose of this study is to develop a forging process of automotive parts that satisfies the deformation characteristics. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the commercial finite element analysis code was used to simulate the forging procedure of engine mounting parts. Experimental results were compared with the simulation results by finite element analysis. Test results were in good agreement with the simulations.
Keywords: Cold forging, hot forging, engine mounting, automotive parts, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421358 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization
Authors: M. F. Zaiyadi, B. Baharudin
Abstract:
Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20691357 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.
Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921356 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem
Authors: W. Wongthatsanekorn, N. Matheekrieangkrai
Abstract:
This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.
Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29131355 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network
Authors: A. Raminfard, S. M. Shahrtash
Abstract:
In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.
Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34241354 Urban Planning Formulation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hypercycle Theory
Authors: Hong Dongchen, Chen Qiuxiao, Wu Shuang
Abstract:
Systematic Science reveals the complex nonlinear mechanisms of behavior in urban system. However, when confronted with such system, most city planners in China are still utilizing simple linear thinking to learn and understand this open complex giant system. In this paper, the hypercycle theory was introduced, which is one of the basis theories of systematic science. Based on the analysis of the reasons for the failure of current urban planning in China, and in consideration of the nonlinear characteristics of the urban system as well, optimization ideas for urban planning formulation were presented such as the shift from blueprint planning to progressive planning and from the rigid urban planning management control to its dynamically monitor and in time feedback.
Keywords: Systematic science, hypercycle theory, urban planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23591353 Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.
Keywords: Classification, neuro-spike coding, parametricmodel, Gaussian mixture with EM algorithm, sequential decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471352 Optimal Generation Expansion Planning Strategy with Carbon Trading
Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai
Abstract:
Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761351 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition
Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei
Abstract:
Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471350 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6521349 On the Joint Optimization of Performance and Power Consumption in Data Centers
Authors: Samee Ullah Khan, C. Ardil
Abstract:
We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.
Keywords: Energy-efficient computing, distributed systems, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16911348 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25861347 Genetic Combined with a Simplex Algorithm as an Efficient Method for the Detection of a Depressed Ellipsoidal Flaw using the Boundary Element Method
Authors: Clio G. Vossou, Ioannis N. Koukoulis, Christopher G. Provatidis
Abstract:
The present work encounters the solution of the defect identification problem with the use of an evolutionary algorithm combined with a simplex method. In more details, a Matlab implementation of Genetic Algorithms is combined with a Simplex method in order to lead to the successful identification of the defect. The influence of the location and the orientation of the depressed ellipsoidal flaw was investigated as well as the use of different amount of static data in the cost function. The results were evaluated according to the ability of the simplex method to locate the global optimum in each test case. In this way, a clear impression regarding the performance of the novel combination of the optimization algorithms, and the influence of the geometrical parameters of the flaw in defect identification problems was obtained.
Keywords: Defect identification, genetic algorithms, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901346 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation
Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi
Abstract:
In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.Keywords: Dehydrogenation, Pt-Sn/Al2O3 Catalyst, Modeling, Nelder-Mead, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27451345 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System
Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein
Abstract:
Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871344 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar
Abstract:
The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.
Keywords: Supersonic nozzle, Chevron, Acoustic level, Shape Optimization of Chevron Nozzles, Jet noise suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38211343 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization
Authors: B. Marasović, S. Pivac, S. V. Vukasović
Abstract:
Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.
Keywords: Croatian capital market, Fractional quadratic programming, Markowitz model, Portfolio optimization, Transaction costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29461342 A New OvS Approach in an Assembly Line Balancing Problem
Authors: P. Azimi, B. Behtoiy
Abstract:
One of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.Keywords: Assembly line balancing problem, optimization via simulation, production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051341 An Optimization Model of CMMI-Based Software Project Risk Response Planning
Authors: Chun-guang Pan, Ying-wu Chen
Abstract:
Risk response planning is of importance for software project risk management (SPRM). In CMMI, risk management was in the third capability maturity level, which provides a framework for software project risk identification, assessment, risk planning, risk control. However, the CMMI-based SPRM currently lacks quantitative supporting tools, especially during the process of implementing software project risk planning. In this paper, an economic optimization model for selecting risk reduction actions in the phase of software project risk response planning is presented. Furthermore, an example taken from a Chinese software industry is illustrated to verify the application of this method. The research provides a risk decision method for project risk managers that can be used in the implementation of CMMI-based SPRM.
Keywords: Software project, risk management, CMMI, riskresponse planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20901340 Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks
Authors: Shrawan Kumar, D. K. Lobiyal
Abstract:
In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.Keywords: Wireless sensor networks, Error term, DV-Hop algorithm, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651339 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle
Authors: Arash Hassanpour Isfahani, Siavash Sadeghi
Abstract:
Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41141338 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33321337 Optimization of a New Three-Phase High Voltage Power Supply for Industrial Microwaves Generators with N Magnetrons by Phase (Treated Case N=1)
Authors: M. Bassoui, M. Ferfra, M. Chraygane, M. Ould Ahmedou, N. Elghazal, A. Belhaiba
Abstract:
Currently, the High voltage power supply for microwave generators with one magnetron uses a single-phase transformer with magnetic shunt. To contribute in the development of technological innovation in industry of manufacturing of power supplies of magnetrons for microwaves, ovens for domestic or industrial use, this original work treats the optimization of a new three-phase high voltage power supply for industrial microwaves generators with N magnetrons by phase (Treated case N=1), from its modeling with Matlab-Simulink. The design of this power supply uses three π quadruple models equivalents of new three-phase transformer with magnetic shunt of each phase. Every one supplies at its output a voltage doubler cell composed of a capacitor and a diode that in its output supplies only one magnetron. In this work we will define a strategy that aims to reduce the volume of the transformer and the weight and cost of the entire system of the high voltage power supply, while respecting the conditions recommended by the manufacturer, concerning the current flowing in each magnetron: (Imax <1.2 A, IAv ≈ 300 mA).
Keywords: Optimization, Three-phase transformer, Modeling, power supply, magnetrons, Matlab Simulink, High Voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28061336 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.
Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431335 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9 DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: Capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23281334 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: Data transformation, functional programming, information server, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7531333 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System
Authors: S. Gherbi, F. Bouchareb
Abstract:
This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.
Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211332 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9881331 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter
Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang
Abstract:
A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.Keywords: Computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, wave energy converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691