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Abstract—Variable angle tow describes the fibres which are
curvilinearly steered in a composite lamina. Significantly, stiffness
tailoring freedom of VAT composite laminate can be enlarged and
enabled. Composite structures with curvilinear fibres have been
shown to improve the buckling load carrying capability in contrast
with the straight laminate composites. However, the optimal design
and analysis of VAT are faced with high computational efforts
due to the increasing number of variables. In this article, an
efficient optimum solution has been used in combination with 1D
Carrera’s Unified Formulation (CUF) to investigate the optimum fibre
orientation angles for buckling analysis. The particular emphasis is
on the LE-based CUF models, which provide a Lagrange Expansions
to address a layerwise description of the problem unknowns.
The first critical buckling load has been considered under simply
supported boundary conditions. Special attention is lead to the
sensitivity of buckling load corresponding to the fibre orientation
angle in comparison with the results which obtain through the
Genetic Algorithm (GA) optimization frame and then Artificial
Neural Network (ANN) is applied to investigate the accuracy of
the optimized model. As a result, numerical CUF approach with
an optimal solution demonstrates the robustness and computational
efficiency of proposed optimum methodology.

Keywords—Beam structures, layerwise, optimization, variable
angle tow, neural network.

I. INTRODUCTION

IN recent years, Variable Angle Tow (VAT) composites can

be used to design the lightweight structures with increased

performance to use in aerospace applications [1]–[3]. The

continuous variation of the stiffness properties obtained by

curvilinear fibre path can provide considerable advantages

in comparison with the straight composite laminates. In the

preliminary design, buckling analysis is often a primary design

criterion. It has been reported by a vast number of researchers

that the capability of VAT plates under the buckling load

[1], [4], [5]. Compared with the benefits provided by VAT,

optimal design of VAT laminates requires to overcome the

difficulties due to the higher number of design variables.

The design of VAT laminates faces with a high number of

variables in the layup sequence at each point of the structure.

The optimization procedure in composite structures can be

provided by the classical theories and definition of lamination

parameters [6]–[8]. Classical approach benefit is that since

the given lamination parameters are usually achieved by a set

of fibre angles, they are capable to provide optimum fibre

angles for a multiple-ply laminate. The problem of optimizing
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lamination parameters is limited depending on the initial

solution than direct optimization of fibre orientation [9].

There is a vast literature on the subject of layerwise (LW)

theory which is implemented in Carrera Unified Formulation

(CUF) [10], [11], and in the form of 1D beam [12], [13],

and also applied to VATs [14], [15]. Through different

design optimization algorithms, evolutionary strategies like

Genetic Algorithm (GA) have been used widely and suggested

for optimizing composite structures [16]. GA is the most

well-known and applicable meta-heuristic algorithm which

for the first time was introduced by Holland [17] in 1975.

Different types of problems can be solved by GA optimization

methods [18], [19]. The purpose of this work is to fill the lack

of research on LW theory through the optimization procedure

which can present a robust, efficient and applicable design of

VAT through CUF framework to find the maximum critical

buckling load. Current research is capable to evaluate the

optimization of fiber orientation angles in a VAT plate, layer

by layer, accurately.

II. LINEAR EQUATIONS FOR VAT LAMINATES

A square laminate with 254 × 254 mm is designed with

the thickness of 0.15 mm for each ply of a 16-ply balanced

symmetric laminate [< T0|T1 >< −T0| − T1 > / < −T0| −
T1 >< T0|T1 >]s based on [20]. Mechanical properties of

material are given by: E1= 181 GPa, E2 = E3= 10.270,

G12 = G13= 7.170, G23= 3.780 and ν12= 0.28. The linear

variation of fibre orientation angle is used [1], [2]. Fibre path

can be designed for the curvilinear fibre path [21] which varies

linearly along one axis, that in the current study is along the

y-direction and can be written as:

θ(y) = 2(T1 − T0)
|y|
a

+ T0 (1)

where T0 is the fibre orientation angle at the centre of the

plate, x = 0, and T1 is the fibre orientation angle at the

edges. a refers to the width of the VAT panel. Fibre orientation

angle varied through the y − axis and it showed by θ(y)
to manufacture the entire ply. Note that in current study

equal number of functions are used through both orthogonal

directions x and y for all cases.

III. NUMERICAL APPROACH

A. Carrera Unified Formulation

In the CUF framework, a beam is investigated by its

cross-section which lies on the xz−axis of a generic Cartesian

reference system. The boundaries of the beam along the
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y − axis are limited to 0 ≤ y ≤ L, where the L is the

length of the beam. In CUF the displacement field for the

beam structure can be expressed as a generic expansion of

primary unknowns:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, . . . ,M (2)

where Fτ is an arbitrary cross-section expansion function

over the x, z − plane, uτ is the generalized displacements

vector, and M refers to the term number of expansions.

The kinematics of model can be modified according to the

function Fτ in 1D CUF beam model which used Lagrange

element as the expansion polynomials and denoted by L9.

Lagrange polynomial expansions can formulate the quadratic

higher-order kinematics. The L9 polynomial expansion is

defined by the following kinematics [22]–[24]:

ux = F1ux1 + F2ux2 + ...+ F9ux9

uy = F1uy1 + F2uy2 + ...+ F9uy9

uz = F1uz1 + F2uz2 + ...+ F9uz9 (3)

where F1, F2, ..., F9 are the nine Lagrange polynomials

as the function on cross-section coordinates, and

ux1, uy1, uz1, ..., uz9 are the displacement unknown variables

through the y − axis which represent pure displacement

components at each root of the L9 polynomial set. The

Lagrange expansions enable the laminate to be evaluated

in the scheme of the LW approach, which is employed by

defining a specific model for each layer. Consequently, the

cross-section description describes separately in the laminate

sheet and every single layer. Besides, LW enabled to increase

the accuracy of distinguishing the mechanical behaviour in

compared to the classical model based on Equivalent Single

Layer (ESL) theory [25].

B. Finite Element Approximation

The finite element model (FEM) can be assumed along the

y−axis for discretization of structure which is approximated

as:

u(x, y, z) = Fτ (x, z)Ni(y)qτi i = 1, 2 . . . ,K (4)

where i is the index for number of nodes in the beam element,

qτi is a vector of the FE nodal parameters and K is the number

of nodes on the element.

C. Fundamental Nucleus

Based on Principal Virtual Displacement (PVD), the virtual

internal work can be express as:

δLint =

∫
V

δεTσdV (5)

where V is the element volume, σ stands as the stress

vectors and δε refers to the virtual variation of strain which is

presented as:

δε = bδu = b(Fs(x, z)Nj(y))δqsj (6)

where δqsj is the virtual variation nodal unknown. By (2),

(4) and (6) geometrical relations can be express as a linear

form. Therefore, the virtual variation of internal work will be

evident as:

δLint = δqT
sj

∫
V

bTNj(y)Fs(x, z)CbFτ (x, z)Ni(y)dV︸ ︷︷ ︸
Fundamental Nucleus

qτ i

= δqT
sjk

τsijqτi (7)

where kτsij is CUF Fundamental Nucleus (FN) of the

element stiffness of matrix k. The FN is a 3 × 3 matrix

that present the cross-sectional function where Fτ = Fs

for τ = s and shape functions is Ni = Nj , for i = j,

which can be expand by using the indexes to be obtained the

element stiffness matrix of any arbitrary refined beam model

[23]. Based on the path function in VAT composites, each

layer provides point-by-point continuous angle variations with

different values. For VAT, the components of the FN make use

of volume integrals. For the sake of brevity, only two terms of

the FN are given in the following and the others can be given

by permutations [22]:

kτsijxx =

∫
V

C22Fτ,xFs,xNiNjdV +

∫
V

C66Fτ,zFs,zNiNjdV

+

∫
V

C44FτFsNi,yNj,ydV ;

kτsijxy =

∫
V

C23FτFs,xNi,yNjdV +

∫
V

C44Fτ,xFsNiNj,ydV ;

(8)

where C is the stiffness coefficients of the elastic stiffness

tensor and can vary within the computational domain;

therefore, they must remain inside the integral of the FN. In the

VAT structure, each fibre path can be defined as an arbitrary

function, and the fibres follow the curvilinear pattern. Hence,

in the domain of plate, C is no longer constant. Therefore,

the integrals can be expressed in a unique form of the volume

based on (8). In addition, the Gauss integration technique is

applied in the framework of CUF. As a result, the material

coefficients in VAT laminates can be considered in any specific

Gauss point. Moreover, 1D CUF beam model is guaranteed a

smooth approximation of the stiffness in the component in

contrast with the finite element method [15], [22].

D. Buckling Formulation

For VAT composites, the Tangent stiffness matrix is given

by the linearization of the virtual variation of the nonlinear

internal strain energy δ(δLint):

δ(δLint) ≈ δqT
τik

τsijδqsj +

∫
V

δ(δε)Tσ0dV (9)

where δ(δLint) is the sum of linear stiffness and virtual

variation of work which is incorporated with initial stresses σ0.

Then, by utilizing (2), (4) and (10) and the Green-Lagrange

nonlinear strain-displacement relations [26], the following

formulations can be provided (see [23]):

δ(δLint) ≈ δqT
τik

τsijδqsj + δqT
τik

τsij
σ0 δqsj

= δqT
τi(k

τsij + kτsij
σ0 )δqsj (10)
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TABLE I
BEAM REFINEMENT IN CUF FRAMEWORK IN CONTRAST WITH

REFERENCE

Model DOF Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

ABAQUS [20] 387205 13.62 21.62 35.40 54.46 56.01
CUF 10B3 43659 13.78 22.03 37.67 55.24 60.57
CUF 15B3 95139 13.61 21.69 35.94 54.51 57.65
CUF 20B3 166419 13.67 21.68 35.69 54.60 56.69

where kτsij
σ0 stands as the FN of the geometrical stiffness

matrix:

kτsij
σ0 = (

∫
V

σ0
xxFτ,xFs,xNiNjdV +

∫
V

σ0
yyFτFsNi,yNj,xdV

+

∫
V

σ0
zzFτ,zFs,zNiNjdV +

∫
V

σ0
xyFτ,xFsNiNj,ydV

+

∫
V

σ0
xyFτFs,xNi,yNjdV +

∫
V

σ0
xzFτ,xFs,zNiNjdV

+

∫
V

σ0
xzFτ,zFs,xNiNjdV +

∫
V

σ0
yzFτ,zFsNiNj,ydV

+

∫
V

σ0
yzFτFs,zNi,yNjdV )I (11)

where the stress tensor is obtained by 9 components

corresponding to 3 × 3 as an identity matrix I. At the end,

global matrices can be assembled in the classical FEM. The

critical buckling loads are determined as those initial stress

states σ0, which render the tangent stiffness matrix singular;

i.e., | K+K0
σ |= 0, [23].

IV. RESULTS

A simply supported (SSSS) boundary condition (BC) is

applied on a symmetric square laminated plate. The two sides

of the plate are under a compression load with F = 1kN
along the beam axis of y, for more details different analysis

of VAT, see [27].

A. Direct Optimization GA

The aim of current research is to increase the first critical

buckling load (Fcr) to improve the performance of the

square laminate under the SSSS boundary condition under

the buckling load. The buckling analysis has been done

in CUF framework through the optimization procedure. For

optimization, Genetic Algorithm (GA) is applied as a direct

optimization in the MATLAB R2017b environment. In current

problem, design variables for optimization procedure set on

the T0 and T1 and are subjected to 0◦ ≤ T0, T1 ≤ 90◦

[28]. The objective function is set on to minimize the 1/Fcr

(maximize the Fcr). Size of population and cross-over fraction

is set on 50 and 0.8, respectively. The preliminary analysis is

done through CUF model with 10, 15 and 20 beam element

align to the y − axis and compared with the reference in

ABAQUS [20] for the VAT laminates with [< 60◦|15◦ ><
−60◦| − 15◦ > / < −60◦| − 15◦ >< 60◦|15◦ >]s. By a

refinement of the beam elements in Table ??, CUF showed

a good convergence properties respect to the reference FEM

solution [20]. The results obtained by CUF illustrated 8.86%,

Fig. 2 First five buckling load of optimal VAT design.

4.06% and 2.32% lower number of Degree of Freedom (DOF)

respect to the model in ABAQUS. For the ease of optimization

and lower computational time, 10B3 elements are chosen to

analyse through the GA. The optimization process is done in

a sequence of iteration which is shown in Fig. 1 for the first

critical buckling load. As it can be seen, by increasing the

number of iteration, the results follow the convergence of the

optimum results. The optimum layup design is obtained by

[< 9◦|51◦ >< −9◦| − 51◦ > / < −9◦| − 51◦ >< 9◦|51◦ >]4
with 17.39 kN for the first critical buckling load which is

shown 27.67% improvement respect to the FEM reference

model. First five buckling modes for optimum results are

shown in Fig. 2.

Fig. 1 GA optimization in different iteration and the mean value of each
iteration cycle

Besides, through the optimization process, all stochastic T0,

T1 and corresponding first critical buckling load are collected

and showed how each individual parameter is connected and

moved through the time of optimization to obtain the optimal

result, see Fig. 3. As it is shown in the current figure, the
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Fig. 3 Distribution of stochastic GA for design variables and first critical
buckling load

Fig. 4 ArchitectureE of Artificial Neural Network

colony of T0 and T1 showed the convergence respect to the

optimum first buckling load. Most population collection of

data have shown a convergence of each parameters (T0, T1

and Fcr) in Fig. 3.

B. Artificial Neural Network

Materials properties and design prediction are quite different

problems, in which the former is usually pointed to as a

forward modelling problem and the latter is an inverse design

problem [29]. For this purpose, all the data also investigated

through the Artificial Neural Network (ANN) framework. A

neural network is express as a computational model whose

layered structure follows the structure of the network of

neurons in the brain, with layers of associated nodes. A neural

network can learn from data, therefore it can be trained to

recognize patterns, classify data and predict coming events. A

neural network consists of an input layer, one or more hidden

layers and an output layer, see Fig. 4.

The layers are interconnected via nodes or neurons, with

each layer using the output of the previous layer as input.

Fig. 5 Comparison between different fit ANN algorithm based on the
number of hidden layer for VAT problem

Fig. 6 Neural network training and testing performance

The quality of VAT optimization affected by design variables

is evaluated by current NN. This paper proposes a neural

network-based prediction model for detection and prediction

critical buckling load as a forward model based on GA. Three

different NN functions are used to fit as a model on the VAT

problem optimization: Levenberg-Marquardt (LM), Scaled

Conjugate Gradient (SCG) [30]. Performance measurement of

BR, LM, and SCG algorithms have been analyzed through

the NN. The results showed convergence of BR and LM

models, while the BR function illustrated the higher value of

R Parameter in the start point, see Fig. 5. The R value is an

indication of the relationship between the outputs and targets.

The R can be changed between 0 and 1, the best value for R is

equal to 1. Moreover, the different number of the hidden layer

are examined for a different mentioned algorithm to obtain

an accurate number of hidden layer for current VAT buckling
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Fig. 7 Error histogram for training and testing through the ANN frame

problem. The results are shown by 30 hidden layer through

BR algorithm, correct results can be obtained by the minimum

error. Based on the 30 number of hidden layer in BR algorithm,

three plots of training, testing and all of the results are shown

in Fig. 6. The dashed line in each plot represents the perfect

result outputs = targets. In current problem dashed line is

completely covered by the solid line which represents the best

fit linear regression line between outputs and targets, where

R = 1, is an exact linear relationship between outputs and

targets which can be obtained. For this problem, the training

data indicates a completely fit and also the test is in a good

fit by R indication parameter. In the end, the error diagram

for validation and test results is obtained and shown in Fig.

7. The blue bars represent the training data and the red bars

are refers to the testing data. Current histogram can show the

outliers, which are data points where the fit is significantly

worse than the majority of data.

V. CONCLUSION

In the current work, the GA is provided to optimize the

buckling load problem of VAT composites by the LW theory

in CUF framework. Present VAT laminates built based on LW

theory to show the ability of CUF approach to obtain accurate

layer by layer composites model. The unified formulation

showed the capability to achieve optimum results through the

GA optimization procedure. LW model in combination with

optimization can be introduced as an accurate model due to

eliminating the calculation of the lamination parameters or

other extra computation processes to obtain approximation

results. The optimum results showed that improvement of the

buckling load can be up to 27.67% with respect to V AT1 in

the reference design. The robustness outcomes confirm that the

GA is a suitable method to use for the optimum concerning

the VAT problem in LW model. The results show that a

combination of CUF and GA can be provided as a suitable and

reliable method to obtain a robust optimum for optimization

of VAT problems in different structural analyses. In the end,

ANN can be proved the optimum results and showed the best

fit model with 30 number of the hidden layer through the BR

algorithm for VAT problem through the buckling load.
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