Search results for: Simulation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15198

Search results for: Simulation study

14478 Alignment of a Combined Groin for Flow through a Straight Open Channel

Authors: M. Alauddin, M. A. Ullah, M. Alom, M. N. Islam

Abstract:

The rivers in Bangladesh are highly unstable having loose boundaries, mild slope of water surface and bed, irregular siltation of huge sediment coming from upstream, among others. The groins are installed in the river bank to deflect the flowing water away from the vulnerable zones. The conventional groins are found to be unstable and ineffective. The combined groin having both impermeable and permeable components in the same structure improves the flow field to function better over others. The main goal of this study is to analyze the hydraulic characteristics induced by the combined groins of different alignments by using a 2D numerical model, iRIC Nays2DH. In this numerical simulation, the K-ε model for turbulence and Cubic Interpolation Pseudo-particle (CIP) method for advective terms are utilized. A particular flow condition is applied in the channel for all sets of groins with different alignments. The simulation results reveal that the combined groins alter the flow patterns considerably, with no significant recirculation of flow in the groin field. The effect of different alignments of groins is found somewhat different. Based on hydraulic features caused by the groins, the combined groin that aligns the permeable component towards slightly downstream performs better over others.

Keywords: Combined groin, alignment, hydraulic characteristics, numerical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
14477 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan

Abstract:

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.

Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
14476 Design, Simulation, and Implementation of a Digital Pulse Oxygen Saturation Measurement System Using the Arduino Microcontroller

Authors: Muhibul Haque Bhuyan, Md. Refat Sarder

Abstract:

If a person can monitor his/her oxygen saturation level intermittently then he/she can identify his/her condition early and thus he/she can seek a doctor’s help. This paper reports the design, simulation, and implementation of a low-cost pulse oxygen saturation measurement device based on a reflective photoplethysmography (PPG) system using an integrated circuit sensor as the fundamental component of this health status checking device. The measurement of the physiological parameter is the blood oxygen saturation level (SpO2) in the peripheral capillary. This work has been implemented using an Arduino Uno R3 microcontroller along with this sensor integrated circuit (IC). The system is designed in the Proteus environment and then simulated to check its performance. After that, the hardware implementation is performed. We used a clipping type optical sensor to sense the arterial oxygen saturation level of blood signal from the fingertips of an individual and then transformed it into the digital data in the microcontroller through its programming its instruction. The designed system was tested by measuring the SpO2 level for several people of different ages, from 12 to 57 years of age. Besides, the same people were tested using a standard machine purchased from the market. Test results were found very satisfactory as the average percentage of error was very low, 1.59% only.

Keywords: Digital pulse oxygen saturation level, oximeter, measurement, design, simulation, implementation, proteus, Arduino Uno microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
14475 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
14474 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim

Abstract:

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
14473 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine

Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin

Abstract:

This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.

Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4462
14472 Nonlinear Large Deformation Analysis of Rotor

Authors: Amin Almasi

Abstract:

Reliability assessment and risk analysis of rotating machine rotors in various overload and malfunction situations present challenge to engineers and operators. In this paper a new analytical method for evaluation of rotor under large deformation is addressed. Model is presented in general form to include also composite rotors. Presented simulation procedure is based on variational work method and has capability to account for geometric nonlinearity, large displacement, nonlinear support effect and rotor contacting other machine components. New shape functions are presented which capable to predict accurate nonlinear profile of rotor. The closed form solutions for various operating and malfunction situations are expressed. Analytical simulation results are discussed

Keywords: Large Deformation, Nonlinear, Rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
14471 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology

Authors: Guillermo Romero-Jiménez, Luis A. Jiménez-Fraustro, Mayolo Salinas-Camacho, Heriberto Avalos-Valenzuela

Abstract:

A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.

Keywords: Geothermal power plant, multiple simulator, training operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
14470 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform

Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee

Abstract:

This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.

Keywords: Boid algorithm, crowd simulation, mobile platform, Newtonian laws, virtual heritage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
14469 Methodology of Realization for Supervisor and Simulator Dedicated to a Semiconductor Research and Production Factory

Authors: Hanane Ondella, Pierre Ladet, David Ferrand, Pat Sloan

Abstract:

In the micro and nano-technology industry, the «clean-rooms» dedicated to manufacturing chip, are equipped with the most sophisticated equipment-tools. There use a large number of resources in according to strict specifications for an optimum working and result. The distribution of «utilities» to the production is assured by teams who use a supervision tool. The studies show the interest to control the various parameters of production or/and distribution, in real time, through a reliable and effective supervision tool. This document looks at a large part of the functions that the supervisor must assure, with complementary functionalities to help the diagnosis and simulation that prove very useful in our case where the supervised installations are complexed and in constant evolution.

Keywords: Control-Command, evolution, non regression, performances, real time, simulation, supervision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
14468 An Improved QRS Complex Detection for Online Medical Diagnosis

Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani

Abstract:

This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.

Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
14467 Adaptive Fuzzy Control on EDF Scheduling

Authors: Xiangbin Zhu

Abstract:

EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.

Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
14466 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-ariyaskul

Abstract:

The production of Dimethyl acetal, Isovaleradehyde and Pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of Acetaldehyde, Methanol, Ethyl Acetate, 1-propanol, water, iso-amyl alcohol and iso-butyl alcohol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: Dimethyl acetal, Pyridine, wine, Aspen Plus, Isovaleradehyde, polymeric precursors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
14465 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
14464 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)

Authors: Mingren Shi, Michael Renton

Abstract:

There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.

Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
14463 Performance Analysis of QS-CDMA Systems

Authors: Cuiran Li, Jianli Xie, Chengshu Li

Abstract:

In the paper, the performance of quasi-synchronous CDMA (QS-CDMA) system, which can allow an increased timing error in synchronized access, is discussed. Average BER performance of the system is analyzed in the condition of different access timing error and different asynchronous users by simulation in AWGN channel. The results show that QS-CDMA system is shown to have great performance gain over the asynchronous system when access timing error is within a few chips and asynchronous users is tolerable. However, with access timing error increasing and asynchronous users increasing, the performance of QS-CDMA will degrade. Also, we can determine the number of tolerable asynchronous users for different access timing error by simulation figures.

Keywords: Code-division multiple access, Quasi-SynchronousCDMA, Access timing error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
14462 Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
14461 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

Authors: Attapon Charoenpon, Ekkarach Pankeaw

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644
14460 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils

Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan

Abstract:

In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.

Keywords: Elasto-plasticity, uncertainty, soils, Fokker-Planck equation, Fourier Spectral method, Finite Difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
14459 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
14458 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances

Authors: Sayed Amir Hamzeh Mirkheshti

Abstract:

Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.

Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
14457 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror

Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin

Abstract:

The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).

Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
14456 Mobile Ad Hoc Networks and It’s Routing Protocols

Authors: Rakesh Kumar, Piush Verma, Yaduvir Singh

Abstract:

A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.

Keywords: AHP, AODV, Cryptography, EA, MANET, Optimized output.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4000
14455 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms

Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil

Abstract:

The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.

Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
14454 Intelligent Control of Robotized Workcell by Augmented Reality Application

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin, M. Janak

Abstract:

The computer aided for design, analysis, control, visualization and simulation of robotized workcells is very interesting in this time. Computer Aided Robot Control (CARC) is a subsystem of the system CIM including the computer aided systems of all activities connected with visualization and working of robotized workcells. There are three basic ideas: current CAD/CAM/CAE systems for design and 3D visualization, special PC based control and simulation systems and Augmented Reality Aided Manufacturing (ARAM) systems. This paper describes example of Open Source software application that can to be utilized at planning of the robotized workcells, visualization and off-line programming the automated processes realized by authors.

Keywords: Intelligent control, augmented reality, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
14453 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
14452 VFAST TCP: A delay-based enhanced version of FAST TCP

Authors: Salem Belhaj, Moncef Tagina

Abstract:

This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.

Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
14451 Power MOSFET Models Including Quasi-Saturation Effect

Authors: Abdelghafour Galadi

Abstract:

In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.

Keywords: Power MOSFET, drift layer, quasi-saturation effect, SPICE model, circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
14450 The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Siface)4H-SiC, through Molecular Dynamics Simulation

Authors: Srikanta Bose, Sudip K. Mazumder

Abstract:

We report here, the results of molecular dynamics simulation of p-doped (Ga-face)GaN over n-doped (Siface)( 0001)4H-SiC hetero-epitaxial material system with one-layer each of Ga-flux and (Al-face)AlN, as the interface materials, in the form of, the total Density of States (DOS). It is found that the total DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and ndoped (Si-face)4H-SiC hetero-epitaxial system, with one layer of (Al-face)AlN as the interface material, is comparatively higher than that of the various cases studied, indicating that there could be good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4HSiC hetero-epitaxial material system.

Keywords: Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
14449 Simulation using the Recursive Method in USN

Authors: Tae Kyung Kim, Hee Suk Seo

Abstract:

Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.

Keywords: Data filtering, recursive CNP, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481