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Abstract—There is a world-wide need for the development of Computer simulation models can provide a relatively fast,
sustainable management strategies to control pest infestation andsafe and inexpensive way to weigh the merits of various
development of phosphine (RHresistance in lesser grain borermanagement options. But the usefulness of simulation models

(Rhyzopertha dominigaComputer simulation models can provide &elies on the accurate estimation of important model
relatively fast, safe and inexpensive way to weigh the merits gf smeters.

various management options. However, the usefulness of simulat onn previously published modelling research “survivorship

models relies on the accurate estimation of important model s not exolicitly included in the model because adequate data
parameters, such as mortality. Concentration and time of exposure\é{ P y d

both important in determining mortality in response to a toxic aget/€reé not available” [8], and thus a simple single gene model
Recent research indicated the existence of two resistance phenotyf@§ used. However, fumigant response analyses of PH
in R. dominicain Australia, weak and strong, and revealed that theesistance irR. dominicain Australia have now indicated two
presence of resistance alleles at two loci confers strong resistarr@sistance phenotypes, which are labelled Weak and Strong
thus motivating the construction of a two-locus model of resistancResistance [3]. The genetic linkage analysis undertaken by
Experimental data sets on purified pest strains, each correspondingihlipaliuset al [10, 11] indicated that two loci confer strong

a single genotype of our two-locus model, were also available. Heng&sistance. Thus we constructed a two-locus model of
* became possible to explicitly include mortalities of the diﬁerenltesistance having nine possible genotypes. The experiments in

lenotypes in the model. In this paper we described how we used twg,,. : .
eneralized linear models (GLMprobit and logistic models, to fit CBliins et al. 4, 5] then performed a series of mortality rate

1e available experimental data sets. We used a direct algebf@P€riments on insects that had been purified to produce
pproach generalized inverse matrix techniqueather than the Strains; each corresponding to a single genotype of our two-
-aditional maximum likelihood estimation, to estimate the moddPcus model. The results of these experiments were confirmed
)arameters. The results show that both probit and logistic modelsifit field trials and are the basis for the current rates used to
ne data sets well but the former is much better in terms of small legeintrol resistant insects in Australia. These experiments differ
quares (numerical) errors. Meanwhile, the generalized inverse maff¥m others (e.g. [9]) where insects are population samples

schnique achieved similar accuracy results to those from thgm the field that contain various mixtures of resistance

naximum likelihood estimation, but is less time consuming andones Hence it becomes possible now to explicitly estimate
omputationally demanding.

mortalities for the available strains (corresponding directly to
Keywords—mortality estimation, probit models, logistic model, SPECific genotypes).

leneralized inverse matrix approach, pest control simulation Phosphine concentration and time of exposure are both
important in determining the intensity of response to a toxic
|, INTRODUCTION agent. In practice, a fumigation treatment needs to fix the

initial concentration or dos€é (mg/l) and exposure tinte The

THE lesser grain boreiRRhyzopertha dominicas a very apjlity to estimate mortality or survival rate (1 — mortality) at a
destructive primary pest of stored grains. Fumigation W'tFénge of concentrations and exposure times based on

‘hosphine (P} is a key component in the management of thgyperimental data is critical for the development of accurate
:ontrol of infestations of the pest world-wide. However heavyimulations and management recommendations.

eliance on PH has resulted in the development of strong |, this paper we described how we used two mogetit

esistance in several major pest species inclugirdpminica  and logistic models, to fit data sets from Collinset al
experiments (2002, 2005) [4, 5] for three strains QRD14,
QRD569 and their Combined F1 (QRD14xQRD569) which
corresponds to three genotymsswith both loci homozygous
susceptible)yr (with both loci homozygous resistant) ahd
(with both loci heterozygous) respectively [13]. We also
compared the least squares errors between observed mortalities
and predicted ones obtained using the two models.

Il.  METHOD AND MATERIAL
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value [6]. GLM includes ordinary linear regressidtisisdhio:ideereP is the samé shown in Eqg. (2). In this case the linear
regression|ogistic regressiorandprobit regressionWe used predictorz is not translated by 5. The two-parameter and-four

probit and logistic models to fit the experimerdata sets. parameter logistic models corresponding to Eqsagd) (5) are
respectively,
Y = athx+ boxot...+ b, 1) z=at+b(CY (7)
z = atby ()+ b2 (C) +b3(CY (8)

We did not employ the statistical iterative apptoae I
maximum likelihood estimatipnbut instead, used a novel '

algebraic direct approach -generalized inverse matrix data. set. we have an over-determined svstem nefuli
technique to estimate the model parameters [12]. This mbthd . ; Y ne
equationswith respect to the parametets be estimated. For

has advantages over qther methods: it is simpk nniy_ one e>1gample, for the model (3), tikequations with 3 variables,(
key command, provides a more accurate estimate 0

. 1 N
parameters, and even if the coefficient matrix loé pver- bu D2) corresponding to the data seXi { t, G}, are as
determined linear system is not numerically (colynfull  follows:
ranked it will still work and yield a solution witinimum :

y Y; =1-a+[log(t)]: b+ [log (C)]- b (i = 1,2,...N) . 9)

error in thel, norm sense [1].
A. Probit models 'llj'rizr)qatnx form of the above equation®\is= b wherex = (a,

The probit (meaning “probability unit”) link functh ®(P)
(Y = O(P)+5) is the inverse cumulative distribution functio

Generalized inverse matrix approach
Algebraically, when any one of the above modefittsd to

(CDF) associated with the standard normal distidgiou2, 7]: 1 logt, logC, Y
1 logt, logC =Y
~ 1 ,v-5 _ 2 2 andb=| "2|. (10
P=o l(\(—5)=—j exp{-u?/2}du (@ A=|. . : : (10)
\/E — : : : :
1 logt, logC Y,
Note that “plus 5 tdD(P)” just makes sure aV values are gty 1og%w N
wosit.ive in prac;ice, otherwise the parametén the following
robit models differ by 5, with other parametershamged. The method of least squares is often used to genera
Using a three-parameter probit model [2], a prpliihe estimators and other statistics in regression aigafi4]. If a
solution minimizes
Y = (@(P)+5 =) a+bylog(t)+ b, log(C) ©) ) ,
N ~ N
1ay be fitted to the data, wheteand C are respectively Z(Yi—Yi) =>(a+b,log(t) +b,logC)1-Y,) (11)
Xposure time and concentration, afid the probit mortality. i=1 i=

;= ; -th .
In the case that the available independent datsistoonly wherey; = a+blog(t)+b,log(C) 1S the i prfedlcted value,
f the product<t (e.g. a range df but a fixed constant timg, then the solution is called laeast Squaresolution. Norm_ally,
ather than separate independent values Gomnd t, the the least squares method can be used to solveegjudarized

. _ . T _ T . T .
arameters, and b, can be merged into a single parameter, €quations ofAx = b i.e. A /Ax =A'b, provided thatA ‘A is
wo-parameter probit model): invertible. Actually, if we letA” be the generalized inverse of

matrix A, thenA'b is such a solutiofL]. Note that ifA is a non-

Y = a+blog(CY) (4) singular square matrix the&i = A™. If Ais column full-ranked,

then A'A is non-singular and\" = (A'A) A", But while this

equation could theoretically be used to calculte it is of

limited practical use for calculating” numerically, because

using QR decomposition or singular value decomposition
An extra termbs log(t) log(C) can be added to describe the(SVQ to 0btainA+ WiIITgive1 n;uch smaller numerical errors than

tteraction of the variables and C, thus obtaining a four- direct calculation ofA'A) “A" [1].

)arameter probit model

Y = a+b, log(t)+ b,log(C) +bslog(t) log(C) (5)

Vhether common logarithms (base 10) or natural ridgas
basee) are used in probit models is immaterial becatisely
cales the estimated valuelof

D. Neatened raw data sets

Collins et al. in 2002 [4] observed mortalities under a range
B Loaistic models of phosphine concentration€:(mg/l) at exposure timet)( 48
' 9 hrs for susceptible (strain QRD14 — correspondingenotype
The most typical link function for logistic modeis the s9 and strong resistant (strain QRD569r} phenotypes and
canonicallogit link: (To distinguish the two models we use their combined F progeny ((569x14)+(14x569) kh). The
instead ofY in Eq. (1)) neatened raw data are listed in Table 1. Noteitttiae response
- - } = 2 (kill) rate isP = 1 or O then we should give them a small
Z=¥(P)=In[P/(1-P)] or P=47(2)=1/(1+€) ©) perturbation (e.g. from 1 t©.9999 or from 0 to 0.000).
Otherwise the corresponding probit or logit valsi@mndefined.
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The LTggovalues (lethal time to achieve 99.9% mortalig)Nare 2012 *°

as follows:
C 0.1, 0.15, 0.2, 0.3, 04, 0.B.75, 1.0
LTees 14.02,12.74,8.509,7.144,6.55,5.628,4.233,3.7R)

These values are derived from the experiments dinSet al.
[5] who observed data for strain QRD569 which wggosed
to aseries of fixed concentrations from 0.1 to 1.0 nigfl a
range of exposure periods.

The two-parameter probit model (4) and logistic elo@)
were used to fit the data sets feg and hh since only one
exposure time was available. The four-parametebiproodel
(5) and logistic model (8) were used to fit the tihata sets for
rr genotype [4, 5] since different combinations apasure
time and concentration were available, allowing irthe
interaction to be considered and more accurateltses

obtained. Note that (hrs) values used to fit the two data sets

are:t = 24x(2, 2, 2, 2, 2, 14.02, 12.74, 8.509, 7.14556
5.628, 4.233, 3.74) (Table 1 and [12]).

TABLE |
THE DATA OF PHOSPHINE DOSE AND THE AGGREGATE RESPONEBRTALITY
RATE FOR THE GENOTYPESS HH, AND RRAT A FIXED EXPOSURE TIMET =48

Open Science Index, Bioengineering and Life Sciences Vol:6, No:7, 2012 publications.waset.org/12379.pdf

HRsS[4]
QRD14(s9
Dose (mg/l) 0.001 0.0015 0.002 0.003 0.004
Mortality 0.0201 0.32 0.7047 0.97331.0000
.omb F1(hh)
Dose (mg/l) 0.0025 0.004 0.005 0.0075 0.01 0.02
Mortality 0.0000 0.3445 0.3940 0.8047 0.8591 0.9868
)RD5€9 (rr)
Dose (mg/l) 0.1 0.25 0.5 1.0 1.25
Mortality 0.0000 0.0200 0.2254 0.5203 0.5705

Ill.  RESULTSAND CONCLUSION
TABLE I

THE FITTED TWO PARAMETERS FOR STRAIQRD14(Ss9 AND ComB F1 (HH)

AND FOUR PARAMETERS FORQRD569(RR) AND THE LEAST SQUARES ERRORS

BETWEEN OBSERVED AND PREDICTED MORTALITIES OBTAINED USINGROBIT
AND LOGISTIC MODELS

Model and fitted parameters

Strain Probit Logistic
JRD14  Y=14.0963+ 8.4248[ lo€kt)] z =-6.4461+ 70.5897)
combF1 Y= 7.6101+ 4.7740[ lo@)] =z =-3.0425+ 8.55581t)
JRD569 Y =-11.8492+ 10.0363 log( z =-4.9769+ 0.0198(
-3.4563 logt) -4.6877C) + 0.1741Ct)
+ 3.6357 logj log(C)
Least squares error
JRD14 0.00054 0.02924
>ombF1 0.03368 0.14878
JRD569 0.00325 0.03357

The fitted parameters and least squares errorsebatw
observed and predicted mortalities (see Eq. (14fgioed from
the two models are listed in Table 2. Also moraliurves
(against doses) for the three strains are plottétgs 1- 3.

It can be seen from Table 2 and Figs 1 and 2 tmat t
sigmoid curves have the same shape fosf@ndhh genotype
insects and the predicted mortalities at the erpemtal doses
obtained using probit and logistic models are hmdtise to the
observed values.

International Scholarly and Scientific Research & Innovation 6(7) 2012

409

T
— Logistic
== Probit |
* = Observed|

0.8}

0.6

>
&
©
+ ’
)
=

0.4

H i H 1
8'.8005 0.0020 0.0025 0.0030 0.0035
Dose (mg/l)

1 Observed mortalities and predicted mor&githy probit and
logistic models for the strain QRD1dg(

+ H
0.0010 0.0015

0.0040

Fig.

1.0

T T
— Logistic
== Probit

* * Observed

0.8

°©

)
T
N

Mortality
~

=)
»
T

0.2

.

* | | | | | | H |
00(.)002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Dose (mg/l)

Fig. 2 Observed mortalities and predicted mor&gitoy probit and
logistic models for the strain Comb Hihf

The mortality curves for thear insects show that the
predicted values from the probit model are closerthe
observed ones than those from logistic model.

The least squares errors (Table 2) from the lagistbdels
are all more than those from the probit models;uadotimes
for thehh beetles, 10 times for the beetle and 54 times for the
ssheetles.

The two probit lines for QRD14 are close to eadieo(Fig.
4). But it can be seen from comparing the leastisggierrors
that the generalized inverse matrix approach haallem
numerical error (for the predicted probit valuags}he sense of
formula (11): 0.2214 compared with 0.3850 (maximum
likelihood) for thessbeetles (also for the other two genotype
beetles).
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Fig. 3 Observed mortalities and predicted mor&gitoy probit and
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