Search results for: Tumor volume estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093

Search results for: Tumor volume estimation.

32403 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
32402 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
32401 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: Optimization, estimation, faults, measurement, high voltage, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
32400 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: H. K. Hwang, Zekeriya Aliyazicioglu, Solomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr

Abstract:

Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: Multiple-input multiple-output (MIMO) radar, phased array antenna, target detection, radar signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
32399 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: Guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
32398 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD

Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang

Abstract:

In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.

Keywords: LTE-A, Relay, TDD, Power Saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
32397 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan Lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
32396 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486
32395 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer

Abstract:

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
32394 Artificial Intelligence Applications in Aggregate Quarries: A Reality

Authors: J. E. Ortiz, P. Plaza, J. Herrero, I. Cabria, J. L. Blanco, J. Gavilanes, J. I. Escavy, I. López-Cilla, V. Yagüe, C. Pérez, S. Rodríguez, J. Rico, C. Serrano, J. Bernat

Abstract:

The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.

Keywords: Aggregates, artificial intelligence, automatization, mining operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26
32393 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
32392 Normalizing Logarithms of Realized Volatility in an ARFIMA Model

Authors: G. L. C. Yap

Abstract:

Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.

Keywords: Long-memory, Gaussian process, Whittle estimator, normalization, volatility, value-at-risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
32391 Aircraft Gas Turbine Engines Technical Condition Identification System

Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev

Abstract:

In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.

Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
32390 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: Palm oil, fatty acid, NIRS, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4370
32389 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold

Authors: Adil Elrayah, Jie Weng, Esra Suliman

Abstract:

The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.

Keywords: Fiber scaffold, copper ions, hydroxyapatite, hardness, in vitro, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
32388 Modeling and Identification of Hammerstein System by using Triangular Basis Functions

Authors: K. Elleuch, A. Chaari

Abstract:

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.

Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
32387 Detecting the Capacity Reserve in an Overhead Line

Authors: S. Berjozkina, A. Sauhats, V. Bargels, E. Vanzovichs

Abstract:

There are various solutions for improving existing overhead line systems with the general purpose of increasing their limited capacity. The capacity reserve of the existing overhead lines is an important problem that must be considered from different aspects. The paper contains a comparative analysis of the mechanical and thermal limitations of an existing overhead line based on certain calculation conditions characterizing the examined variants. The methodology of the proposed estimation of the permissible conductor temperature and maximum load current is described in detail. The transmission line model consists of specific information of an existing overhead line of the Latvian power network. The main purpose of the simulation tasks is to find an additional capacity reserve by using accurate mathematical models. The results of the obtained data are presented.

Keywords: capacity of an overhead line, mechanical conditions, permissible conductor temperature, thermal conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
32386 Using a Trust-Based Environment Key for Mobile Agent Code Protection

Authors: Salima Hacini, Zahia Guessoum, Zizette Boufaïda

Abstract:

Human activities are increasingly based on the use of remote resources and services, and on the interaction between remotely located parties that may know little about each other. Mobile agents must be prepared to execute on different hosts with various environmental security conditions. The aim of this paper is to propose a trust based mechanism to improve the security of mobile agents and allow their execution in various environments. Thus, an adaptive trust mechanism is proposed. It is based on the dynamic interaction between the agent and the environment. Information collected during the interaction enables generation of an environment key. This key informs on the host-s trust degree and permits the mobile agent to adapt its execution. Trust estimation is based on concrete parameters values. Thus, in case of distrust, the source of problem can be located and a mobile agent appropriate behavior can be selected.

Keywords: Internet security, malicious host, mobile agent security, trust management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
32385 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
32384 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh

Abstract:

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable range of multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Keywords: DNA, Nanopore, Amplifier, ADC, Multichannel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
32383 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
32382 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients

Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar

Abstract:

We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.

Keywords: Video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
32381 Estimating Regression Parameters in Linear Regression Model with a Censored Response Variable

Authors: Jesus Orbe, Vicente Nunez-Anton

Abstract:

In this work we study the effect of several covariates X on a censored response variable T with unknown probability distribution. In this context, most of the studies in the literature can be located in two possible general classes of regression models: models that study the effect the covariates have on the hazard function; and models that study the effect the covariates have on the censored response variable. Proposals in this paper are in the second class of models and, more specifically, on least squares based model approach. Thus, using the bootstrap estimate of the bias, we try to improve the estimation of the regression parameters by reducing their bias, for small sample sizes. Simulation results presented in the paper show that, for reasonable sample sizes and censoring levels, the bias is always smaller for the new proposals.

Keywords: Censored response variable, regression, bias.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
32380 Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-Chip RLC Interconnect Load

Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar

Abstract:

The resistive-inductive-capacitive behavior of long interconnects which are driven by CMOS gates are presented in this paper. The analysis is based on the ¤Ç-model of a RLC load and is developed for submicron devices. Accurate and analytical expressions for the output load voltage, the propagation delay and the short circuit power dissipation have been proposed after solving a system of differential equations which accurately describe the behavior of the circuit. The effect of coupling capacitance between input and output and the short circuit current on these performance parameters are also incorporated in the proposed model. The estimated proposed delay and short circuit power dissipation are in very good agreement with the SPICE simulation with average relative error less than 6%.

Keywords: Delay, Inverter, Short Circuit Power, ¤Ç-Model, RLCInterconnect, VLSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
32379 Predicting Dispersion Coefficient in Free-Flowing Zones of Rivers by Genetic Programming

Authors: Rajeev Ranjan Sahay

Abstract:

Transient storage zones along the flow paths of rivers have great influence on the dispersion of pollutants that are either accidentally or otherwise led into them. The speed with which these pollution clouds get transported and dispersed downstream is, to a large extent, explained by the longitudinal dispersion coefficients in the free-flowing zones of rivers (Kf). In the present work, a new empirical expression for Kf has been derived employing genetic programming (GP) on published dispersion data. The proposed expression uses few hydraulic and geometric characteristics of a river that are readily available to field engineers. Based on various performance indices, the proposed expression is found superior to other existing expression for Kf.

Keywords: Dispersion, parameter estimation, rivers, transient pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
32378 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments

Authors: I. Nižetić Kosović, T. Jagušt

Abstract:

Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.

Keywords: Indoor environment, received signal strength indicator, weighted centroid localization, wireless localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3103
32377 Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Authors: Lenka Ševelová, Aleš Florian

Abstract:

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Keywords: FEA, FEM, geotechnical materials, low volume roads, material constitutive models, pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886
32376 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: Fracture criterion, mixed mode loading, damage zone, microcracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
32375 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
32374 State-Space PD Feedback Control

Authors: John Florescu

Abstract:

A challenged control problem is when the performance is pushed to the limit. The state-derivative feedback control strategy directly uses acceleration information for feedback and state estimation. The derivative part is concerned with the rateof- change of the error with time. If the measured variable approaches the set point rapidly, then the actuator is backed off early to allow it to coast to the required level. Derivative action makes a control system behave much more intelligently. A sensor measures the variable to be controlled and the measured in formation is fed back to the controller to influence the controlled variable. A high gain problem can be also formulated for proportional plus derivative feedback transformation. Using MATLAB Simulink dynamic simulation tool this paper examines a system with a proportional plus derivative feedback and presents an automatic implementation of finding an acceptable controlled system. Using feedback transformations the system is transformed into another system.

Keywords: Feedback, PD, state-space, derivative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023