Search results for: Thermal characteristic
1200 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.
Keywords: Steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25941199 Study of the Azo Hydrazone Tautomerism in the 4-(9-Anthrylazo) Phenol
Authors: Ramadan Ali Bawa, Ebtisam Mohammed Alzaraide
Abstract:
The spectroscopic study on 4-(9-anthrylazo) phenol has revealed that the azo dye under study exists in two tautomeric forms which are azo phenol and hydrazo keto forms in ratio of almost (1:1). The azo hydrazone tautomerism was confirmed by the use of IR spectroscopy and HNMR in which the characteristic absorption bands and chemical shifts for both tautomers were assigned.
Keywords: Spectroscopic, tautomeric forms, azo hydrazone tautomerism, IR spectroscopy, HNMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28421198 Creating 3D Models Using Infrared Thermography with Remotely Piloted Aerial Systems
Authors: P. van Tonder, C. C. Kruger
Abstract:
Concrete structures deteriorate over time and degradation escalates due to various factors. The rate of deterioration can be complex and unpredictable in nature. Such deteriorations may be located beneath the surface of the concrete at high elevations. This emphasizes the need for an efficient method of finding such defects to be able to assess the severity thereof. Current methods using thermography to find defects require equipment to reach higher elevations. This could become costly and time consuming not to mention the risks involved in having personnel scaffold or abseiling at such heights. Accordingly, by combining the thermal camera needed for thermography and a remotely piloted aerial system (Drone/RPAS), it could be used to alleviate some of the issues mentioned. Images can be translated into a 3D temperature model to aid concrete diagnostics and with further research can relate back to the mechanical properties of the structure but will not be dealt with in this paper. Such diagnostics includes finding delamination, similar to finding delamination on concrete decks, which resides beneath the surface of the concrete before spalling can occur. Delamination can be caused by reinforcement eroding and causing expansion beneath the concrete surface. This could lead to spalling, where concrete pieces start breaking off from the main concrete structure.
Keywords: Concrete, diagnostic, infrared thermography, 3D thermal models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081197 Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute
Authors: Ashok Ganguly, Pranjali Arondekar
Abstract:
In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.
Keywords: Bézier, Circle Involute, NAUT B-Spline, Spur Gear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901196 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System
Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45671195 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7211194 Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication
Authors: S. S. Gautam, S. Samanta
Abstract:
The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.Keywords: hydrodynamic bearing, micropolar lubrication, coupling number, characteristic length, perturbation analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19641193 Growing Zeolite Y on FeCrAlloy Metal
Authors: Rana Th. A. Al-Rubaye, Burcin Atilgan, Richard J. Holmes, Arthur A. Garforth
Abstract:
Structured catalysts formed from the growth of zeolites on substrates is an area of increasing interest due to the increased efficiency of the catalytic process, and the ability to provide superior heat transfer and thermal conductivity for both exothermic and endothermic processes. However, the generation of structured catalysts represents a significant challenge when balancing the relationship variables between materials properties and catalytic performance, with the Na2O, H2O and Al2O3 gel composition paying a significant role in this dynamic, thereby affecting the both the type and range of application. The structured catalyst films generated as part of this investigation have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA), with the transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces being demonstrated using both SEM and XRD. The robustness of the coatings has been ascertained by subjecting these to thermal cycling (ambient to 550oC), with the results indicating that the synthesis time and gel compositions have a crucial effect on the quality of zeolite growth on the FeCrAlloy wires. Finally, the activity of the structured catalyst was verified by a series of comparison experiments with standard zeolite Y catalysts in powdered pelleted forms.Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24511192 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.
Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21741191 Different Ergonomic Exposure Risk and Infrared Thermal Temperature on Low Back
Authors: Sihao Lin, Bo Shen, Xuexiang Dai, Xuyan Xu, Zhenyi Wu, Xianzhe Zeng
Abstract:
Infrared Thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by IRT before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23 °C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back.
Keywords: Ergonomic exposure, infrared thermography, musculoskeletal disorders, skin temperature, low back.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361190 Enhancement of Heat Transfer Rate in a Solar Flat Plate Collector Using Twisted Tapes and Wire Coiled Turbulators
Authors: S. Vijayakumar, R. Vinoth, K. Abilash, P. Praveen
Abstract:
Effects of insertion of coiled wire in juxtaposition with twisted tapes on heat transfer rate and solar radiation without disturbing the flow inside the riser tubes in a solar flat plate collector is experimentally reconnoitered in this present work. The wire coil used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heaters having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance about 30% over the plain water heaters under the same operating conditions. The effect of twisted tape with wire coils, flow Reynolds number, and the intensity of solar radiation on the thermal performance of the solar water heater has been presented. Effects of insertion of coiled wire in juxtaposition with twisted tapes on heat transfer rate and solar radiation without disturbing the flow inside the riser tubes in a solar flat plate collector is experimentally reconnoitered in this present work. The wire coil used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heaters having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance about 30% over the plain water heaters under the same operating conditions. The effect of twisted tape with wire coils, flow Reynolds number, and the intensity of solar radiation on the thermal performance of the solar water heater has been presented.
Keywords: Solar Flat Plate Collector, Heat Transfer, Twisted tape, Wire coiled turbulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28701189 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems
Authors: Surya Prakash, Sunil Kumar Sinha
Abstract:
This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36591188 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36621187 Bifurcation Analysis in a Two-neuron System with Different Time Delays
Authors: Changjin Xu
Abstract:
In this paper, we consider a two-neuron system with time-delayed connections between neurons. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation results are given to support the theoretical predictions. Finally, main conclusions are given.
Keywords: Two-neuron system, delay, stability, Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13241186 Calculus of Turbojet Performances for Ideal Case
Authors: S. Bennoud, S. Hocine, H. Slme
Abstract:
Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets.
Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation.
The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling.
The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.
Keywords: Brayton cycle, Turbine Blades Cooling, Turbojet Cycle, turbojet performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22121185 Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse
Authors: Glauber Cruz, Patrícia A. S. Monteiro, Carlos E. M. Braz, Paulo Seleghin Jr., Igor Polikarpov, Paula M.Crnkovic
Abstract:
Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.
Keywords: Alkaline solutions, bioethanol production, dilute acid, enzymatic hydrolysis, lignocellulosic biomass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25481184 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure
Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou
Abstract:
A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800o C up to 1200o C. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800o C and 1000o C produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200o C gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications.
Keywords: Chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651183 Conditioning Process of Fresh Activated Sludge
Authors: Salam K Al-Dawery, Mustafa S Nasser
Abstract:
The effect of polyelectrolytes; cationic and anionic charges and coagulants have been investigated for fresh activated sludge at different concentrations and pH values in a comparative fashion. The results from the experiments indicate that the cationic polyelectrolytes have a significant effluence on the sludge characteristic, degree of flocculation and water quality such as turbidity and SVI. The results show that the cationic CPAM-80 is the most effective polyelectrolyte used corresponding to turbidity and SVI despite of the variations in feed properties of the fresh activated sludge.
Keywords: Coagulant, Polyelectrolyte, Settling volume index, Turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161182 A New Design of Mobile Thermoelectric Power Generation System
Authors: Hsin-Hung Chang, Jin-Lung Guan, Ming-Ta Yang
Abstract:
This paper presents a compact thermoelectric power generator system based on temperature difference across the element. The system can transfer the burning heat energy to electric energy directly. The proposed system has a thermoelectric generator and a power control box. In the generator, there are 4 thermoelectric modules (TEMs), each of which uses 2 thermoelectric chips (TEs) and 2 cold sinks, 1 thermal absorber, and 1 thermal conduction flat board. In the power control box, there are 1 storing energy device, 1 converter, and 1 inverter. The total net generating power is about 11W. This system uses commercial portable gas stoves or burns timber or the coal as the heat source, which is easily obtained. It adopts solid-state thermoelectric chips as heat inverter parts. The system has the advantages of being light-weight, quite, and mobile, requiring no maintenance, and havng easily-supplied heat source. The system can be used a as long as burning is allowed. This system works well for highly-mobilized outdoors situations by providing a power for illumination, entertainment equipment or the wireless equipment at refuge. Under heavy storms such as typhoon, when the solar panels become ineffective and the wind-powered machines malfunction, the thermoelectric power generator can continue providing the vital power.
Keywords: Thermoelectric chip, seekback effect, thermo electric power generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28001181 An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems
Authors: S. Sieniutycz
Abstract:
This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431180 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.
Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4791179 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics
Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati
Abstract:
An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14271178 Well-Being and Helping Technology for Retired Population in Finland
Authors: R. Pääkkönen, L. Korpinen
Abstract:
This study aimed to evaluate parameters influencing well-being and how to maintain well-being as long as possible after retirement. There is contradictory information on the health changes after retirement in Finland. This work is based on interviews, statistics, and literature evaluation of Finland. Most often, balance, multitasking reaction time, and adaptation of vision in dim and darks areas are worsened. Slowing is one characteristic that is difficult to measure properly. The most important is try to determine ways to manage daily activities and symptoms of disease after retirement. Medicine is advancing, problems are often also on the economic side. Information of technical aids is important. It is worth planning a retirement age.
Keywords: Retirement, working, aging, wellness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11351177 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs
Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam
Abstract:
The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study, the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.
Keywords: Concrete, iron ore, ice rink, energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30881176 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle
Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada
Abstract:
In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631175 Numerical Simulation of Wall Treatment Effects on the Micro-Scale Combustion
Authors: R. Kamali, A. R. Binesh, S. Hossainpour
Abstract:
To understand working features of a micro combustor, a computer code has been developed to study combustion of hydrogen–air mixture in a series of chambers with same shape aspect ratio but various dimensions from millimeter to micrometer level. The prepared algorithm and the computer code are capable of modeling mixture effects in different fluid flows including chemical reactions, viscous and mass diffusion effects. The effect of various heat transfer conditions at chamber wall, e.g. adiabatic wall, with heat loss and heat conduction within the wall, on the combustion is analyzed. These thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume becomes larger. Both factors, such as larger heat loss through the chamber wall and smaller chamber dimension size, may lead to the thermal quenching of micro-scale combustion. Through such systematic numerical analysis, a proper operation space for the micro-combustor is suggested, which may be used as the guideline for microcombustor design. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the micro-combustor design, optimization and performance analysis.Keywords: Numerical simulation, Micro-combustion, MEMS, CFD, Chemical reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061174 Psychological Research of Ethnic Prejudices
Authors: A.A Issahanova, S. M. Jakupov, Z. B. Madalieva, A.A. Tolegenova
Abstract:
In the article the experience of principle new technology development of ethnopsychological experiment on the basis of using other virtual independent experimental variables is presented. It is shown that ethnic prejudices are the result of forming and development of specific semantic barriers, arising up in the conditions of interethnic co-operation and people-s communication. Their overcoming is more successful in the conditions of the special organized process of teaching in a polyethnic environment, characteristic for the modern instituteKeywords: virtual monoethnic group, semantic barrier, general fund of semantic notions, polyethnic environment, ethnic prejudices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11401173 Application of Four-electrode Method to Analysis Resistance Characteristics of Conductive Concrete
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
The purpose of this paper is to discuss the influence of resistance characteristic on the high conductive concrete considering the various voltage and environment. The four-electrode method is applied to the tailor-made high conductive concrete with appropriate proportion. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored. The result based on the methods reveals that resistivity is less affected by the temperature factor, and the four-electrode method would be an applicable measurement method on a site inspection.Keywords: Conductive concrete, Resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031172 Single Spectrum End Point Predict of BOF with SVM
Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu
Abstract:
SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.
Keywords: SVM, predict, BOF, single spectrum intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591171 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils
Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole
Abstract:
The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.Keywords: Esters, emission, performance, and vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217