Search results for: Data delivery
7073 Proposing an Efficient Method for Frequent Pattern Mining
Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha
Abstract:
Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16837072 Danger Theory and Intelligent Data Processing
Authors: Anjum Iqbal, Mohd Aizaini Maarof
Abstract:
Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.Keywords: artificial immune system, danger theory, intelligent processing, system calls
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18837071 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well
Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo
Abstract:
A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.Keywords: Neural networks, groundwater depth, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25167070 Organizational Data Security in Perspective of Ownership of Mobile Devices Used by Employees for Works
Authors: B. Ferdousi, J. Bari
Abstract:
With advancement of mobile computing, employees are increasingly doing their job-related works using personally owned mobile devices or organization owned devices. The Bring Your Own Device (BYOD) model allows employees to use their own mobile devices for job-related works, while Corporate Owned, Personally Enabled (COPE) model allows both organizations and employees to install applications onto organization-owned mobile devices used for job-related works. While there are many benefits of using mobile computing for job-related works, there are also serious concerns of different levels of threats to the organizational data security. Consequently, it is crucial to know the level of threat to the organizational data security in the BOYD and COPE models. It is also important to ensure that employees comply with the organizational data security policy. This paper discusses the organizational data security issues in perspective of ownership of mobile devices used by employees, especially in BYOD and COPE models. It appears that while the BYOD model has many benefits, there are relatively more data security risks in this model than in the COPE model. The findings also showed that in both BYOD and COPE environments, a more practical approach towards achieving secure mobile computing in organizational setting is through the development of comprehensive cybersecurity policies balancing employees’ need for convenience with organizational data security. The study helps to figure out the compliance and the risks of security breach in BYOD and COPE models.
Keywords: Data security, mobile computing, BYOD, COPE, cybersecurity policy, cybersecurity compliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747069 New Security Approach of Confidential Resources in Hybrid Clouds
Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander Ghorbel
Abstract:
Nowadays, cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime. It also provides an optimized and secured access to the resources and gives more security for the data which is stored in the platform. However, some companies do not trust Cloud providers, they think that providers can access and modify some confidential data such as bank accounts. Many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, but, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some operations on the data before sending them to the provider Cloud in the objective to make them unreadable. The principal idea is to allow user how it can protect his data with his own methods. In this paper, we are going to demonstrate our approach and prove that is more efficient in term of execution time than some existing methods. This work aims at enhancing the quality of service of providers and ensuring the trust of the customers.
Keywords: Confidentiality, cryptography, security issues, trust issues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14727068 A Novel Web Metric for the Evaluation of Internet Trends
Authors: Radek Malinský, Ivan Jelínek
Abstract:
Web 2.0 (social networking, blogging and online forums) can serve as a data source for social science research because it contains vast amount of information from many different users. The volume of that information has been growing at a very high rate and becoming a network of heterogeneous data; this makes things difficult to find and is therefore not almost useful. We have proposed a novel theoretical model for gathering and processing data from Web 2.0, which would reflect semantic content of web pages in better way. This article deals with the analysis part of the model and its usage for content analysis of blogs. The introductory part of the article describes methodology for the gathering and processing data from blogs. The next part of the article is focused on the evaluation and content analysis of blogs, which write about specific trend.Keywords: Blog, Sentiment Analysis, Web 2.0, Webometrics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35447067 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm
Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour
Abstract:
In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.
Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16837066 Encoding and Compressing Data for Decreasing Number of Switches in Baseline Networks
Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh, Hasan Asil, Amir Asil
Abstract:
This method decrease usage power (expenditure) in networks on chips (NOC). This method data coding for data transferring in order to reduces expenditure. This method uses data compression reduces the size. Expenditure calculation in NOC occurs inside of NOC based on grown models and transitive activities in entry ports. The goal of simulating is to weigh expenditure for encoding, decoding and compressing in Baseline networks and reduction of switches in this type of networks. KeywordsNetworks on chip, Compression, Encoding, Baseline networks, Banyan networks.
Keywords: Networks on chip, Compression, Encoding, Baseline networks, Banyan networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19827065 Sampled-Data Control for Fuel Cell Systems
Authors: H. Y. Jung, Ju H. Park, S. M. Lee
Abstract:
Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17237064 Automatic Detection and Spatio-temporal Analysis of Commercial Accumulations Using Digital Yellow Page Data
Authors: Yuki. Akiyama, Hiroaki. Sengoku, Ryosuke. Shibasaki
Abstract:
In this study, the locations and areas of commercial accumulations were detected by using digital yellow page data. An original buffering method that can accurately create polygons of commercial accumulations is proposed in this paper.; by using this method, distribution of commercial accumulations can be easily created and monitored over a wide area. The locations, areas, and time-series changes of commercial accumulations in the South Kanto region can be monitored by integrating polygons of commercial accumulations with the time-series data of digital yellow page data. The circumstances of commercial accumulations were shown to vary according to areas, that is, highly- urbanized regions such as the city center of Tokyo and prefectural capitals, suburban areas near large cities, and suburban and rural areas.Keywords: Commercial accumulations, Spatio-temporal analysis, Urban monitoring, Yellow page data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12637063 EEG Waves Classifier using Wavelet Transform and Fourier Transform
Authors: Maan M. Shaker
Abstract:
The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.Keywords: Bioinformatics, DWT, EEG waves, FFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55587062 Obstacle Classification Method Based On 2D LIDAR Database
Authors: Moohyun Lee, Soojung Hur, Yongwan Park
Abstract:
We propose obstacle classification method based on 2D LIDAR Database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width and intensity data; the first classification was processed by the width data; the second classification was processed by the intensity data; classification was processed by comparing to database; result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.
Keywords: Obstacle, Classification, LIDAR, Segmentation, Width, Intensity, Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34457061 Nigerian Football System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: I. Derek Kaka’an, P. Smolianov, S. Dion, C. Schoen, J. Norberg, C. G. Iortimah
Abstract:
This study examines the current state of football in Nigeria to identify the country's practices, which could be useful internationally, and to determine areas for improvement. Over 200 sources of literature on sport delivery systems in successful sports nations were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro (socio-economic, cultural, legislative, and organizational), meso (infrastructures, personnel, and services enabling sports programs) and micro level (operations, processes, and methodologies for the development of individual athletes). The model has received scholarly validation and has shown to be a framework for program analysis that is not culturally bound. It has recently been utilized for further understanding such sports systems as US rugby, tennis, soccer, swimming, and volleyball, as well as Dutch and Russian swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sports governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 116 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, a content analysis of the Nigeria Football Federation's website and organizational documentation was conducted. This paper focuses on the micro level of Nigerian football delivery, particularly talent search and development as well as advanced athlete preparation and support. Results suggested that Nigeria could share such progressive practices as the provision of football programs in all schools and full-time coaches paid by governments based on the level of coach education. Nigerian football administrators and coaches could provide better football services affordable for all, where success in mass and elite sports is guided by science focused on athletes' needs. Better implemented could be international best practices such as lifelong guidelines for health and excellence of everyone and integration of fitness tests into player development and ranking as done in best Dutch, English, French, Russian, Spanish, and other European clubs; integration of educational and competitive events for elite and developing athletes as well as fans as done at the 2018 World Cup Russia; and academies with multi-stage athlete nurturing as done by Ajax in Africa as well as Barcelona FC and other top clubs expanding across the world. The methodical integration of these practices into the balanced development of mass and elite football will help contribute to international sports success as well as national health, education, crime control, and social harmony in Nigeria.
Keywords: Football, high performance, mass participation, Nigeria, sport development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557060 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data
Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani
Abstract:
Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.
Keywords: EMD, neural data processing, spike detection, wavelet decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23747059 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: Privacy enforcement, Platform-as-a-Service privacy awareness, cloud computing privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7597058 DIFFER: A Propositionalization approach for Learning from Structured Data
Authors: Thashmee Karunaratne, Henrik Böstrom
Abstract:
Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.Keywords: Machine learning, Structure classification, Propositionalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12237057 Improving the Performance of Proxy Server by Using Data Mining Technique
Authors: P. Jomsri
Abstract:
Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.
Keywords: Association rule, proxy server, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30627056 Performance Analysis of the Subgroup Method for Collective I/O
Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim
Abstract:
As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.
Keywords: Collective I/O, MPI, parallel file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15757055 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.
Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33157054 Quantification of Technology Innovation Usinga Risk-Based Framework
Authors: Gerard E. Sleefe
Abstract:
There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.Keywords: innovation, risk assessment, product development, technology management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15997053 Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network
Authors: M. V. Ramana Rao, T. Adilakshmi
Abstract:
Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.Keywords: Wireless Sensor Network (WSN), Medium Access Control (MAC), Berkeley Media Access Control (BMAC), mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23827052 A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems
Authors: Ghalem Belalem, Yahya Slimani
Abstract:
Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.Keywords: Data Grid, replication, consistency, optimistic approach, pessimistic approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15757051 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54317050 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data
Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara
Abstract:
This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.
Keywords: Text mining, sequential mining, time constraints, daily business reports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14887049 Virtual Reality Learning Environment in Embryology Education
Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani
Abstract:
Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.Keywords: Virtual reality, student assessment, medical education, 3D, embryology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8627048 A 3.125Gb/s Clock and Data Recovery Circuit Using 1/4-Rate Technique
Authors: Il-Do Jeong, Hang-Geun Jeong
Abstract:
This paper describes the design and fabrication of a clock and data recovery circuit (CDR). We propose a new clock and data recovery which is based on a 1/4-rate frequency detector (QRFD). The proposed frequency detector helps reduce the VCO frequency and is thus advantageous for high speed application. The proposed frequency detector can achieve low jitter operation and extend the pull-in range without using the reference clock. The proposed CDR was implemented using a 1/4-rate bang-bang type phase detector (PD) and a ring voltage controlled oscillator (VCO). The CDR circuit has been fabricated in a standard 0.18 CMOS technology. It occupies an active area of 1 x 1 and consumes 90 mW from a single 1.8V supply.
Keywords: Clock and data recovery, 1/4-rate frequency detector, 1/4-rate phase detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29277047 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints
Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic
Abstract:
A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22107046 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16167045 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).
Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9287044 Soft Computing based Retrieval System for Medical Applications
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.Keywords: CBIR, GA, Rough sets, CBMIR, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732