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Abstract—With increasing data in medical databases, medical 
data retrieval is growing in popularity. Some of this analysis 
including inducing propositional rules from databases using many 
soft techniques, and then using these rules in an expert system. 
Diagnostic rules and information on features are extracted from 
clinical databases on diseases of congenital anomaly. This paper 
explain the latest soft computing techniques and some of the 
adaptive techniques encompasses an extensive group of methods 
that have been applied in the medical domain and that are used for 
the discovery of data dependencies, importance of features, 
patterns in sample data, and feature space dimensionality 
reduction. These approaches pave the way for new and interesting 
avenues of research in medical imaging and represent an important 
challenge for researchers. 

Keywords—CBIR, GA, Rough sets, CBMIR, SVM. 

I.  INTRODUCTION 
ONTENT-based image retrieval (CBIR) the retrieval of 
images on the basis of features automatically derived 
from the images themselves - is now a thriving field for 

research and development, with reports of new techniques 
appearing almost daily. As the field has matured, the nature 
of the problems faced by researchers and developers has 
inevitably changed. Much early research, [1, 2, 3] was 
concerned primarily with establishing the feasibility of 
retrieving images from large collections using automatically-
derived features. More recent research [4,5,6] for recent 
comprehensive reviews has concentrated on identifying 
improved techniques for CBIR, including new types of 
feature, representation method and matching technique. Now 
the feasibility of the underlying technology has been 
demonstrated, effort can be devoted to the crucial question of 
how to design and build systems that successfully meet real 
user needs. Most current CBIR techniques are geared 
towards retrieval by some aspect of image appearance, 
depending on the automatic extraction and comparison of 
image features judged most likely to convey that appearance.  

The features most often used include color [7,8], texture 
[9,10], shape [11,12], spatial layout [13], based on genetic 
algorithm(GA) and rough sets [14] [15].  
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In fact the CBIR packages making use of such techniques 
are commonly available. Using these techniques the features 
become very powerful as they take into the consideration, the 
relative spatial grouping of the local features become very 
robust towards small amount of noise and towards natural 
difference in radiograph images originating under different 
conditions and/ or from different persons. This is not because 
the need for such systems is lacking, there is ample evidence 
of user demand for better image data management in fields 
as diverse as crime prevention, photo-journalism, fashion 
design, trademark registration, and medical diagnosis 
[16,17]. It is because there is a mismatch between the 
capabilities of the technology and the needs of users. The 
vast majority of users do not want to retrieve images simply 
on the basis of similarity of appearance. They need to be able 
to locate pictures of a particular type (or individual instance) 
of object, phenomenon, or event [18] and have a useful 
distinction [16] between retrieval by primitive image feature. 
(such as color, texture or shape)and semantic feature (such as 
the type of object or event depicted by the image). Eakins 
[19] has taken this distinction further, identifying three 
distinct levels of image query. Although the volume of 
research into user needs is not large, the results of those 
studies which have been conducted to date (e.g. [18]) suggest 
strongly that very few users need level 1 retrieval. The 
majority of image queries received by picture libraries are at 
level 2, though a significant number (particularly in 
specialist art libraries) are at level 3. The overwhelming 
majority of CBIR systems, both commercial and 
experimental, offer nothing but level 1 retrieval. A few 
experimental systems now operate at level 2, but none at all 
at level 3. 

 What are the prospects of bridging what has been 
referred to as the semantic gap [16], and delivering the image 
retrieval capabilities that users really want? This paper aims 
to answer this question by reviewing current research into 
semantic image retrieval, with particular emphasis on the 
contribution which techniques from related fields such as 
artificial intelligence (AI)are making to developments in this 
area. CBIR may have its roots in the field of classical image 
analysis; it relies on many standard image analysis 
techniques, such as convolution, edge detection, pixel 
intensity histogramming, and power spectrum analysis. But a 
successful solution to the problems of semantic image 
retrieval (if one exists at all) may well require a significant 
paradigm shift, involving techniques originally developed in 
other fields. CBIR has already benefited greatly from 
insights derived from related fields. A prime example of this 
process is the technique of relevance feedback [20], 

C 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:4, No:7, 2010 

291International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
61

.p
df



originally developed for text retrieval, where users indicate 
the relevance of each item of output received, and the system 
amends its search strategy accordingly. Relevance feedback 
is showing considerable promise in the image retrieval area, 
largely because users can rapidly judge the relevance of a 
retrieved image within seconds. It has now been successfully 
implemented in several experimental CBIR systems [21,22]. 
Other examples where CBIR has benefited from insights 
from related fields include relatively efficient direct access 
via multidimensional indexing, from the database 
management field [23], and retrieval by subjective 
appearance, drawing on Gestalt psychology [24]. AI, defined 
by Luger and Stubblefield [25] as `the study of the 
mechanisms underlying intelligent behavior though the 
construction and evaluation of artifacts that enact those 
mechanisms, appears a particularly promising source of 
ideas for advancing the art of semantic image retrieval. It 
aims to develop techniques which allow a machine to 
generate solutions & interact with the environment and learn 
from past experience; generate output matching that of a 
human expert; in other words, to exhibit intelligent behavior, 
defined by Newell and Simon [26] as `behavior appropriate 
to the ends of the system and adaptive to the demands of the 
environmental. Most observers would agree that assessing 
the contents of a set of images in order to decide their 
relevance to a query was indeed a task requiring intelligence 
in this sense. In the context of image retrieval, the end of the 
system is the identification of a set of images from a 
collection which meets a user's perhaps subjective and 
poorly-formulated need, and adaptive to the demands of the 
environment implies that the system should offer flexibility 
in allowing different modes of user interaction, and learn 
from user feedback. 

II. THE NEED FOR SOFT COMPUTING RETRIEVALS  
Rough sets provide reasonable structures for the overlap 

boundary given domain knowledge. The case study for 
images of the heart on cardiovascular magnetic resonance 
(MR) images also extends to handling multiple types of 
knowledge including myocardial motion, location and signal 
intensity. The earlier study was concerned with 
distinguishing different picture types of the central nervous 
system. Research involving color images appears in many 
works. Researchers used the primary measure as a 
visualization of multi-dimensional color information. The 
basic idea was to build a histogram on top of the histograms 
of the primary color components of red, green, and blue. The 
concept of region of interest (ROI) is commonly used in 
medical imaging. A ROI is a selected subset of samples 
within an image identified for a particular purpose. For 
instance the endocardial border may be defined on the basis 
of image formation for the purpose of assessing cardiac 
function. 

The problem of a machine vision application where an 
object is imaged by a camera system is considered earlier. 
The object space can be modeled as a finite subset of the 
Euclidean space when the objects image is captured via an 
imaging system. Rough sets can bound such sets and provide 
a mechanism for modeling the spatial uncertainty in the 

image of the object. This work introduced a rough set 
approach for building pattern matching systems that can be 
applicable with a wide range of images in medical sciences.  

 Identifying even a relatively simple artifact such as a 
chair is a rather more complex process. Since chairs come in 
a wide variety of colors, textures and shapes, primitive image 
features are unlikely to suffice on their own. The problem of 
recognizing a chair is not perceptually more difficult than 
that of recognizing a banana. The difference lies in the 
degree of interpretation necessary. Recognition of an object 
as a chair requires reference to some higher-level model, 
defining spatial, structural and perhaps other constraints. 
Such a model needs to be susceptible to modification, to 
include the possibility that new designs of chair may appear 
in the future (not a problem one would expect to encounter 
with bananas!). Humans build up and refine such a model 
automatically from past experience: for machines, the 
process is less straightforward. The need to gain such 
experience directly is one reason why Brooks has advocated 
designing robots in humanoid form. 

Identifying complex human artifacts is still more 
problematic. Experienced engineers can readily recognize a 
pressure-limiting valve in an engineering drawing, even 
though its actual shape may vary considerably - presumably 
because their training enables them to draw reasonable 
inferences from the appearance and layout of key 
components, as well as the nature of any larger structures in 
which they appear. But even a highly intelligent human 
would find such a task impossible without the requisite 
engineering training. The need to update one's mental model 
of a specialist device of this kind is likely to be even greater 
than for an everyday object such as a chair, since new 
designs are likely to appear at frequent intervals. Yet another 
layer of complexity is encountered when trying to interpret 
scenes depicting specific types of event. To recognize a 
photograph as that of a child's birthday party demands not 
only the identification of objects which might be present in 
such scenes (young human figures, balloons, lighted 
candles), but a further level of reasoning about the 
relationship of these objects to each other and the extent to 
which these conform to prior expectations of what occurs at 
such events. Again, the ability to update such mental models 
in the light of changing circumstances is crucial. The issues 
surrounding human recognition and classification of images 
have been extensively studied by Rosch.  These findings 
give some indication of the likely success of semantic image 
retrieval techniques which rely on automatic derivation of 
object or scene labels from visual features of the image. Such 
techniques are most likely to succeed for objects within an 
image which correspond to basic classes (such as banana or 
horse)whose members share a strong visual similarity. For 
such objects it should be possible to construct or learn 
suitable object models permitting recognition of typical 
examples of each class. For other types of object (such as 
bird or tree), a similar approach based on visual similarity of 
subclasses (probably, though not necessarily, based on 
existing taxonomic divisions such as sparrow, parrot or 
eagle) may prove more effective. For object classes where 
many defining attributes are non-visual (such as chair or 
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pump), however, this approach appears doomed to failure - 
though the fact that humans can recognize such objects from 
visual cues alone suggests that the problem is in principle 
soluble. To develop a complete understanding of image 
contents at the semantic level is a formidable task, well 
beyond the capabilities of any current machine. Fortunately, 
such a complete level of understanding is not an essential 
prerequisite for successful semantic image retrieval, as 
several researchers in the field have pointed out earlier. 
Empirically, a retrieval system can be regarded as successful 
if it has the ability to classify a sufficiently high proportion 
of objects sought by users accurately enough for its retrieval 
output to satisfy a searcher's needs. In many contexts 
(including photo-journalism), this means that quite low 
classification accuracy may be acceptable, provided the 
searcher can in fact find a usable picture. An analogous 
situation holds in text retrieval, where effective retrieval 
systems have been around for years, despite continuing 
difficulties with automatic text understanding. Unfortunately 
it is not yet clear what level of image understanding is in fact 
required for successful classification and retrieval. The only 
way to resolve this question appears to lie in the 
development and evaluation of semantic image retrieval 
techniques.  

III. THE TECHNIQUES OF SOFT COMPUTING  
The computational intelligence and medical imaging are 

discussed in this section. The fuzzy sets theory, neural 
networks, and evolutionary computation type of approaches 
are characterized on the basis of their ability to effectively 
model complex phenomena and provide solutions. The 
medical imaging techniques are gaining ground due to 
newly developed imaging modalities and improvement of 
device capabilities. Combining computational intelligence 
approaches with medical imaging is undoubtedly a 
challenging and promising research field. Neural Networks 
is: Evolutionary Computing; Rough Sets; Fuzzy Logic; 
Symbolic AI 

A. Evolutionary Computing 
There is increasing interest in the use of Image Retrieval 

techniques to aid diagnosis by identifying the region of 
abnormalities from bio-medical images. Such images usually 
have higher resolution than general-purpose pictures. The 
system uses concept based pixel descriptors, which combines 
the human perception of color and texture into a single 
vector. The region extracted using the feature vectors 
represented in the form of pixel descriptor are fed as input to 
a neural network, which is trained for classification of 
images using genetic algorithm. The technique has been 
implemented on the database of biomedical images. 

B. Evolutionary Computing Methods  
The methodology for processing spectral images to 

retrieve information on underlying physical, chemical, and/or 
biological phenomena is based on evolutionary 
computational methods implemented in software. The 
methodology was developed for the initial purpose of 

retrieving the desired information from spectral image data 
acquired by remote-sensing instruments aimed at planets. 
Examples of information desired in such applications include 
trace gas concentrations, temperature profiles, surface types, 
day/night fractions, cloud/aerosol fractions, seasons, and 
viewing angles. The well-established optimization 
evolutionary computing methods (ECM) used in this 
methodology are Genetic Algorithms and Simulated 
Annealing. These are embedded in a conceptual framework, 
represented in the architecture of the implementing software, 
that enables automatic retrieval of spectral and angular data 
and analysis of the retrieved solutions for uniqueness.  

C. Rough Sets 
Rough set theory is being used for extraction of rules 

from databases where the advantage of creation of readable 
if-then rules. Such rules have a potential to reveal 
previously undiscovered patterns in the data. Unlike other 
computational intelligence techniques, rough set analysis 
requires no external parameters and uses only the 
information presented in the given data. One of the nice 
features of rough set theory is that it can tell whether the 
data is complete or not based on the data itself. On the other 
hand, if the data is complete, rough sets are able to 
determine whether there are any redundancies in the data 
and find the minimum data needed for classification. This 
property of rough sets is very important for applications 
where domain knowledge is very limited or data collection 
is expensive/laborious because it makes sure the data 
collected is just sufficient to build a good classification 
model without sacrificing the accuracy or wasting time and 
effort to gather extra information about the objects. 

D. Fuzzy Logic 
One important challenge in modern CBMIR approaches 

is represented by the semantic gap related to the complexity 
of the medical knowledge. Among the methods that are able 
to close this gap in CBMIR, the use of medical 
thesauri/ontologies has interesting perspectives due to the 
possibility of accessing on-line updated relevant 
webservices and to extract real-time medical semantic 
structured information. The most of the proposed methods 
are evaluated on the Cross Language Evaluation Forum’s 
(CLEF) medical image retrieval benchmark, by focusing 
also on a more homogeneous component medical image 
database: the Pathology Education Instructional Resource 
(PEIR) to obtain four square matrices. 

E. Symbolic AI 
This is a knowledge-based approach to develop a 

retrieval engine than can reason with concepts abstracted 
over multiple media forms. Abduction is a reasoning model 
for constructing an appropriate explanation for a set of 
observed patterns. The framework is general enough to 
combine data from content analysis of multiple media forms 
as well as meta-data, such as annotations, that may be 
associated with the documents. 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:4, No:7, 2010 

293International Scholarly and Scientific Research & Innovation 4(7) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

7,
 2

01
0 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

27
61

.p
df



IV. FUTURE OF SOFT COMPUTING FOR CBMIR  
We have outlined some applications of soft computing 
agent. For example, multi-agent cooperates with soft 
computing to optimize the decision support system and 
routing task, which considers some human preference and is 
better than habitual method. And mobile soft computing 
agent performs very well in custom dependent production 
and internet browsing. It has many advantages in its 
realization. The SCA taking advantages of soft computing 
and agent will be a new trend, especially in the situations 
which are filled with uncertain, imprecise and complex 
problems. Vision in general and images in particular have 
always played an important and essential role in human life. 
Soft computing is an emerging field that consists of 
complementary elements of fuzzy logic, rough sets, neural 
computing, evolutionary computation, machine learning and 
probabilistic reasoning. SCIP working group is an informal 
organization that aims to establish and intensify 
international cooperation between researchers in the area of 
soft computing in image processing.  

Analysis of the earlier works as reviewed above suggests 
the following conjectures. Although none is readily 
quantifiable, or susceptible to mathematical proof, they 
should all be empirically testable in the same sense. 

However, these have often been applied to peripheral 
aspects of the problem in hand, and there appears to be 
considerable scope for the more systematic application of AI 
techniques and concepts. Adaptive learning is perhaps the 
prime example here. The potential of techniques such as 
case-based reasoning, explanation-based learning , reasoning 
by analogy and conceptual clustering to provide systematic 
learning capabilities for image retrieval systems remains 
largely untapped. The opportunities for developing truly 
intelligent image retrieval systems by combining techniques 
from the fields of image processing and artificial intelligence 
are considerable. 

V. WHY SOFT COMPUTING IS BETTER THAN SVM 
At a higher level, we really wish to combine descriptors 

encoding several properties in order to address the semantic 
gap problem: it is not easy for a user to map her/his visual 
perception of an image into low level features. Without 
mixing distinct properties in a same feature vector, this 
combination could be done by weighting the similarity 
values resulting from different descriptors. However, more 
complex functions than a linear combination are likely to 
provide more flexibility in matching the results with the 
users’ expectations. We address the problem by presenting a 
genetic programming (GP) framework to the design of 
combined similarity functions. Our solution relies on the 
creation of a composite descriptor, which is simply the 
combination of pre-defined descriptors using the GP 
technique. We employ GP to combine the similarity values 
obtained from each descriptor, creating a more effective 
fused similarity function. As far as we know, this approach 
is original and opens a new and productive field for 

investigation (considering, for example, different 
applications, descriptors, and GP parameters). 

A. Advantage of Soft Computing over SVM  
Our motivation to choose GP stems from its success in 

many other machine learning applications. Some works, for 
example, show that GP can provide better results for pattern 
recognition than classical techniques, such as Support Vector 
Machines. Different from previous approaches based on 
genetic algorithms (GAs), which learn the weights of the 
linear combination function, our framework allows nonlinear 
combination of descriptors. It is validated through several 
experiments with two image collections under a wide range 
of conditions, where the images are retrieved based on the 
shape of their objects. These algorithms demonstrate the 
effectiveness of the soft computing according to various 
evaluation criteria. Given that it is not based on feature 
combination, the framework is also suitable for information 
retrieval from multimodal queries, as for example by text, 
image, and audio.  

B. Background 
i) Genetic programming 

GAs and GP [40] belong to a set of artificial intelligence 
problem-solving techniques based on the principles of 
biological inheritance and evolution. Each potential solution 
is called an individual (i.e., a chromosome) in a population. 
Both GA and GP work by iteratively applying genetic 
transformations, such as crossover and mutation, to a 
population of individuals to create more diverse and better 
performing individuals in subsequent generations. A fitness 
function is available to assign a fitness value for each 
individual. 

The main difference between GA and GP relies on their 
internal representation—or data structure—of an individual. 
In general, GA applications represent each individual as a 
fixed-length bit string, like (1101110…) or a fixed-length 
sequence of real numbers (1.2,2.4,4,…). In GP, on the other 
hand, more complex data structures are used (e.g., trees, 
linked lists, or stacks. Fig.1 shows an example of a tree 
representation of a GP individual. 

 

 
 

Fig. 1. A sample tree representation 

Furthermore, the length of a GP data structure is not 
fixed, although it may be constrained by implementation to 
be within a certain size limit. Because of their intrinsic 
parallel search mechanism and powerful global exploration 
capability in a high-dimensional space, both GA and GP 
have been used to solve a wide range of hard optimization 
problems that oftentimes have no known optimum solutions. 
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ii) GP components 

In order to apply GP to solve a given problem, several 
key components of a GP system need to be defined.  

GP searches for good combination functions by 
evolving a population along several generations. Population 
individuals are modified by applying genetic 
transformations, such as reproduction, mutation, and 
crossover. The reproduction operator selects the best 
individuals and copies them to the next generation. The two 
main variation operators in GP are mutation and crossover. 
Mutation can be defined as random manipulation that 
operates on only one individual. This operator selects a point 
in the GP tree randomly and replaces the existing subtree at 
that point with a new randomly generated subtree [18]. The 
crossover operator combines the genetic material of two 
parents by swapping a subtree of one parent with a part of 
the other (see 2). 

 

 
Fig. 2 A graphical illustration of the crossover operation 

C. CBIR model  
In this section, we formalize how a CBIR system can be 

modeled. 
 

Definition 1  
An image is a pair (DI, ), where:  
• is a finite set of pixels, and  
• is a function that assigns to each pixel p in 
DI a vector of values in some arbitrary space (for 
example, when a color in the RGB system is 
assigned pixel). 
 
Definition 2  
A simple descriptor (briefly, descriptor) D is defined as a 
pair (εD,δD), where:  
• is a function, which extracts a feature 
vector from an image .  
• is a similarity function that 
computes the similarity between two images by taking into 
account the distance between their corresponding feature 
vectors 
. 
Definition 3  

A feature vector of an image is a point in space: 
, where n is the dimension of the 

vector. Examples of possible feature vectors are the color 
histogram [19], the multiscale fractal curve, and the set of 
Fourier coefficients. They encode image properties, such as 
color, shape, and texture. Note that different types of feature 
vectors may require different similarity functions. Fig. 3(a) 
illustrates the use of a simple descriptor D to compute the 
similarity between two images and . First, the 
extraction algorithm εD is used to compute the feature 

vectors and associated with the images. Next, the 
similarity function δD is used to determine the similarity 
value d between the images. 
 
Definition 4 
A composite descriptor is a pair (see Fig. 3(C)), 
where:  
• is a set of k pre-defined simple 
descriptors.  
• is a similarity function which combines the similarity 
values obtained from each descriptor , i=1,2,…,k. 
 

 

Fig. 3 (a) The use of a simple descriptor D for computing the 
similarity between images. (b) Composite descriptor. 

VI. GP FRAMEWORK FOR CBIR  
Here framework uses GP to combine simple descriptors. 

This decision stemmed from three reasons: (i) the large size 
of the search space for combination functions; (ii) previous 
success of using GP in information retrieval; and (iii) no 
prior work on applying GP to image retrieval. 

The corresponding CBIR system can be characterized as 
follows. For a given large image database and a given user-
defined query pattern (e.g., a query image), the system 
retrieves a list of images from the database which are most 
“similar” to the query pattern, according to a set of image 
properties. These properties may take into account the shape, 
color, and/or texture of the image objects, and are 
represented by simple descriptors. These simple descriptors 
are combined using a composite descriptor  , where  is a 
mathematical expression uniquely represented as an 
expression tree, whose non-leaf nodes are numerical 
operators and the leaf node set is composed of the similarity 
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values di, i=1,2,…,k. Fig. 4 shows a possible combination 
(obtained through the GP framework) of the similarity values 
d1, d2, and d3 of three simple descriptors. 

 

 
 

Fig. 4 Example of a GP-based similarity function represented in a 
tree. 

The overall retrieval framework can be divided into two 
different approaches based on whether or not it considers the 
use of validation sets in the similarity function discovery 
process. Overtraining can occur when the learned or evolved 
model fits the particulars of the training data overly well and 
consequently does not generalize to new unseen examples  

A. GP framework without validation sets  
Algorithm 1 illustrates the GP-based retrieval framework 

without considering validation sets. Initially, the population 
starts with individuals created randomly (step 4). This 
population evolves generation by generation through genetic 
operations (step 5). A fitness function is used to assign the 
fitness value for each individual (step 5.1.1). This value is 
used to select the best individuals (step 5.2). Next, genetic 
operators are applied to this population aiming to create 
more diverse and better performing individuals (step 5.4). 
The last step consists in determining the best individual to be 
applied to the test set (step 6). The commonest choice is the 
individual with the best performance in the training set (e.g., 
the first tree of the last generation).  

 
Algorithm 1 
(1) Let T be a training set 
(2) Let S be a set of pairs (i, fitnessi), where i and             

fitnessi are an individual and its fitness, respectively. 
(3) S←  

(4) P←  Initial random population of individuals ( “
similarity trees”) 

(5) For each generation g of Ng generations do                                                                                                                                              
(5.1)  For each individual i P do 
          (5.1.1)  fitnessi←fitness(i,T) 
(5.2) Record the top Ntop individuals and values in Sg 
  (5.3)  S←S Sg 
  (5.4) . Create a new population P by: 
               (5.4.1) Reproduction 
               (5.4.2) Crossover 
               (5.4.3) Mutation 
(6) Apply the “best individual” in S on a test set.  

B. GP framework with validation sets  
The last step presented in the GP framework consists in 

determining the best individual to be applied to the test set. 
Since the natural choice would be the individual with best 
performance in the training set, it might not generalize due to 
over-fitting during the learning phase. In order to alleviate 
this problem, the best individuals over the generations are 
applied to a validation set. In that way, it is possible to select 
the individual that presents the best average performance in 
both sets: training and validation. Algorithm 2 presents the 
GP framework for image retrieval that considers the use of 
validation sets. 

Note that, since the average does not ensure that the 
selected individual has a similar performance in both sets, it 
would be interesting to consider the standard deviation to 
correct such a bias. Formally, we apply the method described 
to determine the best individual: let  be the average 
performance of individual i in the training and validation 
sets, and σ(fi) be the corresponding standard deviation. The 
best individual is given by (1). 

 
Algorithm 2 
(1) Let T be a training set 
(2) Let V be a validation set S←  
(3) Let S be a set of pairs (i,fitnessi), where i and 

fitnessi are an individual and its fitness, respectively. 
(4) S←  

(5) P←  Initial random population of individuals ( “
similarity trees”) 

(6) For each generation g of Ng generations do 
      (6.1)  For each individual i P do 
               (6.1.1)  fitnessi←fitness(i,T) 
       (6.2) Record the top Ntop individuals and their 

values in Sg 
       (6.3)  S←S Sg  
       (6.4) . Create a new population P by: 
                    (6.4.1) Reproduction 
              (6.4.2) Crossover 
              (6.4.3) Mutation 
(7) F←  
(8) For each individual i S do  
           (8.1)  F←F {(i,fitness(i,V))}; 

(9) BestIndividual←SelectionMethod(F,S) 
(10) Apply the “best individual” on a test set of  images 

The main difference between Algorithms 1 and 2 relies on 
the use of a validation set to identify appropriate individuals 
to be used on the test set. The individual selection method 
used in Algorithm 2 (step 8) considers the performance of 
individuals in the training set (stored in the set S) and in the 
validation set (stored in the set F), and individual that 
satisfies Equation. 
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VII. CONCLUSIONS  
We have proposed an abductive framework of reasoning 

for retrieval of multimedia documents. The proposed method 
can retrieve documents based on concepts abstracted over 
multiple media forms. We use conceptual and media 
knowledge to derive combinations of media patterns that can 
be used to identify the concepts presented in a query and are 
invariant over media specific variations. The documents that 
provide plausible explanations to the expected media 
patterns are selected for retrieval. The method of partitioning 
the knowledge base required for retrieval is a unique feature 
of the approach. It has resulted in modelling retrieval as a 
problem of distributed techniques using well-defined 
functional units of knowledge. In nut-shell, many successful 
algorithms applied in medical imaging have been reported in 
the literature and the applications of rough sets & genetic 
programming in medical image processing have to be 
analyzed individually. Rough sets & genetic programming 
are the new challenges to deal with the issues that cannot be 
addressed by traditional image processing algorithms or by 
other classification techniques. By introducing rough sets, 
algorithms developed for medical imaging and pattern 
recognition often become more intelligent and robust that 
provides a human-interpretable, low cost, exact enough 
solution, as compared to traditional techniques. and their 
applications to medical imaging including object 
representation, image segmentation, classification and 
feature extraction. Finally, the main purpose here is to 
present to the rough sets and GA techniques for medical 
imaging research communities for the state of the art 
approach in both applications. Consequently, it is expected 
that this work will serve as a fertile ground for creative 
discussions to researchers working in this field. 
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