
 
Abstract—In this paper, we present a Platform-as-a-Service 

(PaaS) model for controlling the privacy enforcement mechanisms 
applied on user data when stored and processed in Cloud data centers. 
The proposed architecture consists of establishing user configurable 
‘sticky’ policies on the Graphical User Interface (GUI) data-bound 
components during the application development phase to specify the 
details of privacy enforcement on the contents of these components. 
Various privacy classification classes on the data components are 
formally defined to give the user full control on the degree and scope 
of privacy enforcement including the type of execution containers to 
process the data in the Cloud. This not only enhances the privacy-
awareness of the developed Cloud services, but also results in major 
savings in performance and energy efficiency due to the fact that the 
privacy mechanisms are solely applied on sensitive data units and not 
on all the user content. The proposed design is implemented in a real 
PaaS cloud computing environment on the Microsoft Azure platform.  

 
Keywords—Privacy enforcement, Platform-as-a-Service privacy 

awareness, cloud computing privacy. 

I. INTRODUCTION 

LOUD computing services are categorized into three 
main categories: Infrastructure as a Service (IaaS) [1,2], 

Platform as a service (PaaS) [2] and Software as a Service 
(SaaS) [3]. IaaS is acquired when physical resources are 
needed by a customer without going through the complexities 
of setting up and configuring hardware. This virtual service 
allows the customer to select, configure, and use virtualized 
computing resources and is then billed based on her usage of 
these resources. Customers can also choose the notion of 
hybrid clouds; based on the idea of customers connecting 
cloud services to their own network via a Virtual Private 
Network Connection (VPN). Amazon and Microsoft are the 
key players in the IaaS arena through their EC2 [4] and Azure 
[5] cloud platforms respectively. SaaS in the Cloud 
encompasses the traditional software services that customers 
used to consume but with major enhancements related to 
service usability and billing. Again, the concept of 
virtualization plays a significant role towards providing an 
“elastic” software environment that can charge customers in a 
pay-as-you-go fashion with high degrees of flexibility in 
resource upgrading or even downgrading. Companies such as 

 
Maha Shamseddine is with the Department of Electrical & 

Computer Engineering, Beirut Arab University, Beirut, Lebanon (e-
mail: m.shamseddine@bau.edu.lb). 

Amjad Nusayr and Wassim Itani are with the Department of 
Computer Science, University of Houston-Victoria, Victoria, Texas, 
USA (e-mail: nusayra@uhv.edu itaniw@uhv.edu). 

Google and SalesFoce are considered the main pioneers and 
providers for such SaaS services. PaaS, on the other hand, 
provides customers with an environment for development and 
deployment. PaaS delivers virtualized hardware and software 
tools to the customer. Customers are not worried about the 
infrastructure in this case but rather the type and the degree of 
services provided. The notion of a hybrid PaaS also exists if a 
customer or company wishes to use a combination of their 
own systems with the virtual services. There are various types 
of PaaS services to developers, including but not limited to: 
public PaaS, private PaaS, mobile PaaS, and open PaaS. The 
usage of PaaS has proven to be cost effective on many levels. 
One example is cross-platform application development. PaaS 
allows developers to design, develop and test software with 
lower costs. Another example is using PaaS as the platform for 
web real-time communication (WebRTC); giving a web 
browser or a mobile application the ability to communicate 
over the network using customized and highly efficient 
application programming interfaces (APIs). Companies 
acquiring such a service save sizable costs in physical 
hardware investments and get relieved of the daunting 
concerns related to downtime or system upgrades since all of 
these aspects are on the PaaS server side.   

In a PaaS environment, the software development and 
deployment are hosted on the server side and clients usually 
access this software using a thin web client. Many PaaS 
platforms charge their customers on a subscription basis. The 
customer is billed either monthly or annually or on some 
agreed usage of the time. This provides cost effective real-
time access to software. 

Privacy is a major hindering factor in the widespread 
adoption of Cloud computing. Outsourcing the clients’ data 
and software for storage and processing on remote servers that 
are not managed or controlled by the customers themselves 
poses major security and privacy risks. Cloud providers, even 
reputable ones, cannot be fully trusted to store sensitive 
customer data or execute software operating on such sensitive 
data. For this reason, privacy enforcement should be given 
exceptional attention when designing Cloud software services 
to protect sensitive data from malicious or the least curious 
Cloud service providers. Privacy has many definitions. An 
early general definition provided by the American Institute of 
Certified Public Accountants (AICPA) is “The rights and 
obligations of individuals and organizations with respect to the 
collection, use, retention, and disclosure of personal 
information” [18]. When thinking about privacy, many 
considerations arise including data access, retention, data 
destruction, monitoring, and how to mitigate breaches. Privacy 

Platform-as-a-Service Sticky Policies for Privacy 
Classification in the Cloud 

Maha Shamseddine, Amjad Nusayr, Wassim Itani 

C 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:6, 2021 

410International Scholarly and Scientific Research & Innovation 15(6) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
6,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
11

5.
pd

f



and security go hand in hand, although some would argue that 
one cannot achieve privacy without security.  

Privacy policies in cloud computing should be applied on 
every level in the software development lifecycle. Cloud 
providers must implement the necessary measures to ensure 
the integrity and confidentiality of the customer data as well as 
provide Cloud customers with the needed control on the 
different aspects related to the storage and processing of their 
sensitive information. This study utilizes a PaaS model for 
controlling privacy enforcement mechanisms that are applied 
on user data from GUI components when stored and processed 
in Cloud data centers. This is accomplished by creating 
‘sticky’ policies to GUI components to be used during the 
development of software. Our model separates the notion of 
privacy policies and applying them in a modular approach to 
GUI components. 

The rest of the paper is as follows. Section II shows the 
related work. Section III shows the design of the presented 
model. Section IV introduces the prototype implementation. 
Conclusion and future extensions are in Section V.  

II. RELATED WORK 

A lot of research work has targeted the topic of privacy in 
cloud computing. The main breakthrough in this domain is 
represented by the introduction of the first fully Homomorphic 
encryption scheme by Gentry in 2009 [6]. Homomorphic 
encryption allows the processing operations to be applied on 
data while it is in the encrypted state. In this way the privacy 
of the information is enforced even when processed in the 
Cloud data center since there is no need to decrypt the data by 
the Cloud service provider to carry out the processing 
operations. It should be noted here that homomorphic 
encryption is not a new concept and has been known for over 
30 years. However, the key contribution in Gentry’s fully 
homomorphic encryption scheme is that the processing can be 
applied on both the addition as well as the multiplication 
micro operations constituting the service functions. Since any 
algorithm can be mapped to a set of circuit-level AND 
(multiplication) and XOR (addition) gates, Gentry’s fully 
homomorphic scheme allows operations on encrypted data 
using any computable service function. The main obstacle in 
deploying homomorphic encryption schemes to secure the 
privacy of Cloud services is the high resource consumption 
required by the public-key cryptographic operations employed 
by these schemes. This fact has left homomorphic encryption 
implementations applicable in limited application domains 
with a very narrow practicability margin. Many research 
works have implemented improvements on Gentry’s fully 
homomorphic encryption scheme to make it more feasible for 
real-world Cloud deployments [7]-[10]. Despite a major 
improvement of about 70X in the speed of homomorphic 
encryption operations [11], still this encryption scheme is not 
ready for use in large scale Cloud services. The other approach 
to target privacy challenges in Cloud computing is to employ 
tamper-proof cryptographic hardware to provide a set of 
physically and logically isolated execution containers to 
process sensitive data. The work in [12] presented a set of 

privacy protocols leveraging cryptographic coprocessors to 
provide the necessary privacy enforcement in the Cloud. The 
main concept in [12] is to develop a software division process 
that specifies the protected parts of software that need to 
process sensitive data and the non-protected parts that do not 
need any privacy enforcement. Accordingly, the protected 
software parts are allocated to be processed in tamper-proof 
cryptographic coprocessors installed by a trusted third party in 
the Cloud data centers. The privacy protocols specified 
provide a privacy feedback mechanism that informs users of 
the different privacy operations carried out on their sensitive 
data in the Cloud. 

Many surveys considered data privacy in Cloud computing. 
Some important ones on this topic are presented in [13]-[15]. 
In [16] the authors present a PaaS content-based policy-driven 
security system for specifying the encryption range and 
strength on Cloud network data. The work presented in this 
paper is inspired by [16], however the main focus in this paper 
is on classifying the privacy of data storage and processing 
rather than on the data transfer over the network links.  

III. SYSTEM DESIGN 

The system model we assume in this work follows a 
traditional Cloud computing architecture consisting of a Cloud 
customer or client requesting a software development and 
execution services from a PaaS Cloud Service Provider (CSP). 
Fig. 1 presents the main system components for enforcing the 
privacy of customer data as it is processed and stored in the 
Cloud data centers. The main privacy enforcement 
components are described as follows: 
1. The Privacy Policy: is a detailed XML-formatted 

specification of the privacy rules to be applied on the GUI 
data-bound component values. The privacy policy rules 
are established and linked to the respective GUI 
components at the software development phase. The 
policy rule enforcement is done at the software execution 
phase. The main rule syntax of the privacy policy is 
presented in Fig. 2. The privacy rules are wrapped in a 
policy configuration component giving software 
developers a set of flexible policy specification options to 
apply on the GUI data-bound components at the software 
development phase. The privacy rules on each GUI data-
bound component specify the type of privacy enforcement 
mechanism to apply on the data value of that respective 
component. Three main rules are supported currently by 
the privacy policy: 

a. Tamper-proof-processing: this option specifies that the 
sensitive customer data must be processed in tamper-
proof processing containers in the Cloud data center. 
Tamper-proof execution typically leverages cryptographic 
coprocessors [12] installed in the data center to keep the 
data processing secure against tampering even form the 
CSP. 

b. Homomorphic-enc: this option specifies that the sensitive 
customer data are to be processed using homomorphic 
encryption functions running in the Cloud. Homomorphic 
encryption allows the processing on data in the encrypted 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:6, 2021 

411International Scholarly and Scientific Research & Innovation 15(6) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
6,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
11

5.
pd

f



state (by a customer key) without the need for decrypting 
it first. 

c. Encrypt-for-storage: this option considers the privacy of 
data that do not require any processing in the Cloud and 

that need to be stored encrypted in the Cloud storage. The 
encryption is done on the customer-side using a customer 
encryption key and sent encrypted to the Cloud storage. 

 

Cloud Client

Cloud Service Provider

Protected Data

Privacy Enforcement Engine

Homomorphic 
Encryption Units

Crypto 
coprocessor

units

Software 
Service

Sensitive Customer Data

Privacy Policy

Storage-only 
Encrypted Data

Privacy Policy

 

Fig. 1 Main components of the privacy-classification system architecture 
 

 

Fig. 2 Sample prototype policy configuration 
 

2. The Privacy Enforcement Engine: applies the rules of the 
sticky privacy policy on the sensitive customer data 
received from the Cloud client. The enforcement is based 
on the privacy rules specified in the selected privacy 
configuration. The cryptographic operations are 
performed using a reference to the encryption key stored 
on the client side. The Cloud provider enforces the same 
privacy policy on the data received from the customer 
privacy enforcement engine and processes it based on the 
selected privacy configuration rules. So sensitive data are 

(1) processed in tamper-proof execution units controlled 
by a trusted third party on behalf of the Cloud customer, 
(2) processed using homomorphic encryption functions 
implemented in software in the Cloud, or (3) stored 
encrypted in the Cloud storage without the need for any 
processing operations. 

3. The privacy execution containers: are software and 
hardware-based execution containers deployed in the 
Cloud data centers to process the sensitive customer data. 
As mentioned previously, the hardware approach relies on 
tamper-proof cryptographic coprocessor while the 
software approach employs homomorphic encryption 
processing units that can be operate on data in the 
encrypted form. 

IV. IMPLEMENTATION 

A sample prototype test-bed implementation is developed 
by employing the Microsoft.Net framework [17]. The privacy 
model implementation utilizes the libraries and classes that are 
a major component delivered as part of the framework. 
System.Windows.Forms is a Namespace that contains all the 
needed classes for creating Windows based applications 
operating under Windows operating system. All GUI 
components (Text Boxes, buttons, etc) inherit from the 
Control class that is basically an essential part of the 
System.Windows.Forms Namespace.  

The privacy model modifies the GUI components by 
customizing a derived class to contain the privacy 
configurations. To specify the privacy policy, this derived 
class inherits all the members of the Control class and adds a 
new data member that encapsulates all the necessary fields and 
operations to implement privacy on a component level. The 
Control class is the base class for all visible GUI components. 

<privacy-policy version=1.0> 
<privacy-configuration number=”1”> 
<Data-Bound-GUI-Comp name=TextBox1 value=”5322-
1342-564-7843”> 
<tamper-proof-processing>true</tamper-proof-processing > 
<encryption-key>ref:4265_client</encryption-key> 
< /Data-Bound-GUI-Comp> 
<Data-Bound-GUI-Comp name=TextBox2 
value=”$67990”> 
<homomorphic-enc>true</ homomorphic-enc> 
<encryption-key>ref:3243_client</encryption-key> 
< /Data-Bound-GUI-Comp> 
<Data-Bound-GUI-Comp name=ComboBox1 
value=”Victoria, tx, 77901”> 
< encrypt-for-storage >true</encrypt-for-storage > 
<encryption-key>ref:5693_client</encryption-key> 
< /Data-Bound-GUI-Comp> 
</privacy-configuration> 
<privacy-configuration number=”2”> 

. 

. 

. 
</privacy-configuration> 
</privacy-policy> 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:6, 2021 

412International Scholarly and Scientific Research & Innovation 15(6) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
6,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
11

5.
pd

f



Fig. 3 illustrates this by taking the base class, adding the extra 
members, and an example of using the ButtonBase class 
inheriting from modified Control class.  

 

 

Fig. 3 UML diagram for the binding the security policy 
configurations to the .NET GUI data-bound components 

 
Since GUI applications are event driven, the execution of 

the privacy configurations happens when a user generates an 
event. The Privacy model is not concerned with all events but 
rather with the events that initiate some kind of data transfer. 
This implementation is possible by creating a custom 
“EventHandler” delegate object that is responsible for calling 
events handlers for each GUI component.  

A developer can add a component to a Windows Form 
Application and choose which privacy configurations to 
apply. Fig. 4 illustrates an example of using the button 
component. Once the user adds the button, an option will be 
provided to what privacy policy configuration the user wants 
to implement for that component.  

 

 

Fig. 4 Basic prototype for graphically specifying sticky privacy 
policy configurations to the GUI data-bound components 

V. CONCLUSION AND FUTURE EXTENSIONS 

In this paper we presented a PaaS policy-based system for 
privacy classification of user data as it is stored and processed 
in the Cloud data centers. The design is presented briefly 
together with a proof-of-concept implementation using the 

.Net framework. Due to the time limitation of this paper, many 
future extensions can be applied to enhance this work. This 
includes: (1) a more comprehensive design description of the 
system components, specifically the privacy enforcement 
engine and the operation of the homomorphic and tamper-
proof privacy schemes in the Cloud, (2) a formal analysis of 
the privacy methods proposed and a proof of their 
effectiveness in enforcing the privacy of the sensitive user 
data, (3) a more extensive implementation scheme that 
includes all the cryptographic and policy-based mechanisms 
proposed on the client as well as on the Cloud sides. 

REFERENCES 
[1] Bhardwaj, Sushil, Leena Jain, and Sandeep Jain. "Cloud computing: A 

study of infrastructure as a service (IAAS)." International Journal of 
engineering and information Technology 2, no. 1 (2010): 60-63. 

[2] Keller, Eric, and Jennifer Rexford. "The" Platform as a Service" Model 
for Networking." INM/WREN 10 (2010): 95-108. 

[3] Dubey, Abhijit, and Dilip Wagle. "Delivering software as a service." 
The McKinsey Quarterly 6, no. 2007 (2007): 2007. 

[4] Amazon AWS homepage: http://aws.amazon.com 
[5] Microsoft Azure homepage: http://azure.microsoft.com 
[6] Gentry, Craig. "Fully homomorphic encryption using ideal lattices." In 

Proceedings of the forty-first annual ACM symposium on Theory of 
computing, pp. 169-178. 2009. 

[7] Brakerski, Zvika, and Vinod Vaikuntanathan. "Efficient fully 
homomorphic encryption from (standard) LWE." SIAM Journal on 
Computing 43, no. 2 (2014): 831-871. 

[8] Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) 
fully homomorphic encryption without bootstrapping." ACM 
Transactions on Computation Theory (TOCT) 6, no. 3 (2014): 1-36. 

[9] Brakerski, Zvika, and Vinod Vaikuntanathan. "Fully homomorphic 
encryption from ring-LWE and security for key dependent messages." In 
Annual cryptology conference, pp. 505-524. Springer, Berlin, 
Heidelberg, 2011. 

[10] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical Fully 
Homomorphic Encryption." IACR Cryptol. ePrint Arch. 2012 (2012): 
144. 

[11] Halevi, Shai, and Victor Shoup. "Faster homomorphic linear 
transformations in HElib." In Annual International Cryptology 
Conference, pp. 93-120. Springer, Cham, 2018. 

[12] Itani, Wassim, Ayman Kayssi, and Ali Chehab. "Privacy as a service: 
Privacy-aware data storage and processing in cloud computing 
architectures." In 2009 Eighth IEEE International Conference on 
Dependable, Autonomic and Secure Computing, pp. 711-716. IEEE, 
2009. 

[13] Zhou, Minqi, Rong Zhang, Wei Xie, Weining Qian, and Aoying Zhou. 
"Security and privacy in cloud computing: A survey." In 2010 Sixth 
International Conference on Semantics, Knowledge and Grids, pp. 105-
112. IEEE, 2010. 

[14] Sun, Yunchuan, Junsheng Zhang, Yongping Xiong, and Guangyu Zhu. 
"Data security and privacy in cloud computing." International Journal of 
Distributed Sensor Networks 10, no. 7 (2014): 190903. 

[15] Xiao, Zhifeng, and Yang Xiao. "Security and privacy in cloud 
computing." IEEE communications surveys & tutorials 15, no. 2 (2012): 
843-859. 

[16] Itani, Wassim, Ayman Kayssi, and Ali Chehab. "SNUAGE: an efficient 
platform-as-a-service security framework for the cloud." Cluster 
computing 16, no. 4 (2013): 707-724. 

[17] Microsoft .Net Framework Homepage: 
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework 

[18] American institute of certified public accountants: 
https://www.aicpa.org/ 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:6, 2021 

413International Scholarly and Scientific Research & Innovation 15(6) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
6,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
11

5.
pd

f


