Search results for: ion sensitive field effect transistor (ISFET)
127 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions
Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747126 Space-Time Variation in Rainfall and Runoff: Upper Betwa Catchment
Authors: Ritu Ahlawat
Abstract:
Among all geo-hydrological relationships, rainfallrunoff relationship is of utmost importance in any hydrological investigation and water resource planning. Spatial variation, lag time involved in obtaining areal estimates for the basin as a whole can affect the parameterization in design stage as well as in planning stage. In conventional hydrological processing of data, spatial aspect is either ignored or interpolated at sub-basin level. Temporal variation when analysed for different stages can provide clues for its spatial effectiveness. The interplay of space-time variation at pixel level can provide better understanding of basin parameters. Sustenance of design structures for different return periods and their spatial auto-correlations should be studied at different geographical scales for better management and planning of water resources. In order to understand the relative effect of spatio-temporal variation in hydrological data network, a detailed geo-hydrological analysis of Betwa river catchment falling in Lower Yamuna Basin is presented in this paper. Moreover, the exact estimates about the availability of water in the Betwa river catchment, especially in the wake of recent Betwa-Ken linkage project, need thorough scientific investigation for better planning. Therefore, an attempt in this direction is made here to analyse the existing hydrological and meteorological data with the help of SPSS, GIS and MS-EXCEL software. A comparison of spatial and temporal correlations at subcatchment level in case of upper Betwa reaches has been made to demonstrate the representativeness of rain gauges. First, flows at different locations are used to derive correlation and regression coefficients. Then, long-term normal water yield estimates based on pixel-wise regression coefficients of rainfall-runoff relationship have been mapped. The areal values obtained from these maps can definitely improve upon estimates based on point-based extrapolations or areal interpolations.Keywords: Catchment's runoff estimates, influence area regional regression coefficients, runoff yield series,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100125 Wound Healing Effect of Ocimum sanctum Leaves Extract in Diabetic Rats
Authors: Manish Kumar Gautam, Raj Kumar Goel
Abstract:
Delayed wound healing in diabetes is primarily associated with hyperglycemia, over-expression of inflammatory marker, oxidative stress and delayed collagen synthesis. This unmanaged wound is producing high economic burden on the society. Thus research is required to develop new and effective treatment strategies to deal with this emerging issue. Our present study incorporates the evaluation of wound healing effects of 50% ethanol extract of Ocimum sanctum (OSE) in streptozotocin (45mg/kg)-induced diabetic rats with concurrent wound ulcer. The animals showing diabetes (Blood glucose level >140 and <250 mg/dL) will be selected for wound healing study using standard dead space wound model. Wounds were created by implanting two polypropylene tubes (0.5 x 2.5 cm2 each), one on either side in the lumbar region on the dorsal surface of each rat. On the 10th postwounding day, the animals were sacrificed and granulation tissue formed on the implanted tubes was carefully dissected out and study the status of antioxidants (Superoxide dismutase, SOD and Glutathione, GSH) free radicals (Lipid peroxidation, LPO and nitric oxide, NO) acute inflammatory marker (myeloperoxidase, MPO) connective tissue determinants, hydroxyproline, hexosamine and hexuronic acid, which play a major role in wound healing and diabetes. Besides the anti-diabetic parameters (estimation of serum blood glucose, triglycerides and total cholesterol), the above parameters for wound healing were studied both in normal, untreated and OSE treated diabetic rats. The effects of extract on above parameters will be compared with known standard antioxidant (Vitamin E) and anti-diabetic (Glybenclamide) drugs. OSE 400 mg/kg substantiated by significantly decreased serum blood glucose, triglycerides and total cholesterol. OSE also decrease granulation tissue free radicals (LPO, 58.1% and NO, 52.7%) and myeloperoxidase (MPO, 63.3%), and enhanced antioxidants (GSH, 116.4% and SOD, 201.1%)
Keywords: Wound healing, diabetes, Ocimum sanctum, Antioxidant, Free radical, Myeloperoxidase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160124 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Organic Nutrients
Authors: Ayman El Sabagh, Sobhy Sorour, Abd Elhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka
Abstract:
Salinity is one of the major factors limiting crop production in an arid environment. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. So it is implacable to either search for salinity enhancement of soybean plants. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine as well as, compost application on soybean plants grown under salinity stress. The experiment was conducted under greenhouse conditions at the Graduate School of Biosphere Science Laboratory of Hiroshima University, Japan in 2011. The experiment was designed as a spilt-split plot based on randomized complete block design with four replications. The treatments could be summarized as follows; (i) salinity concentrations (0 and 15 mM), (ii) compost treatments (0 and 24 t ha-1) and (iii) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Results indicated that salinity stress induced reduction in growth and physiological aspects (dry weight per plant, chlorophyll content, N and K+ content) of soybean plant compared with those of the unstressed plants. On the other hand, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Special attention was paid to, the tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved K+, and proline accumulation. While, significantly decreased electrolyte leakage ratio and Na+ content. These results clearly demonstrate that harmful effect of salinity could reduce on growth aspects of soybean. Consequently, exogenous osmoprotectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance of soybean in the drylands.Keywords: Compost, glycine betaine, growth, proline, salinity tolerance, soybean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231123 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).
Keywords: Absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719122 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth
Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey
Abstract:
Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.
Keywords: Nanoparticles, seed germination, seed soaking, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883121 Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic
Authors: Wan-I Lee, Nelio Mendoza Figueredo
Abstract:
The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.
Keywords: COVID-19, mobile health, mHealth, service quality, use intention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698120 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.Keywords: Fire, Normal strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387119 Solar Energy Collection using a Double-layer Roof
Authors: S. Kong Wang
Abstract:
The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334118 Reutilization of Organic and Peat Soils by Deep Cement Mixing
Authors: Bee-Lin Tang, Ismail Bakar, Chee - Ming Chan
Abstract:
Limited infrastructure development on peats and organic soils is a serious geotechnical issues common to many countries of the world especially Malaysia which distributed 1.5 mill ha of those problematic soil. These soils have high water content and organic content which exhibit different mechanical properties and may also change chemically and biologically with time. Constructing structures on peaty ground involves the risk of ground failure and extreme settlement. Nowdays, much efforts need to be done in making peatlands usable for construction due to increased landuse. Deep mixing method employing cement as binders, is generally used as measure again peaty/ organic ground failure problem. Where the technique is widely adopted because it can improved ground considerably in a short period of time. An understanding of geotechnical properties as shear strength, stiffness and compressibility behavior of these soils was requires before continues construction on it. Therefore, 1- 1.5 meter peat soil sample from states of Johor and an organic soil from Melaka, Malaysia were investigated. Cement were added to the soil in the pre-mixing stage with water cement ratio at range 3.5,7,14,140 for peats and 5,10,30 for organic soils, essentially to modify the original soil textures and properties. The mixtures which in slurry form will pour to polyvinyl chloride (pvc) tube and cured at room temperature 250C for 7,14 and 28 days. Laboratory experiments were conducted including unconfined compressive strength and bender element , to monitor the improved strength and stiffness of the 'stabilised mixed soils'. In between, scanning electron miscroscopic (SEM) were observations to investigate changes in microstructures of stabilised soils and to evaluated hardening effect of a peat and organic soils stabilised cement. This preliminary effort indicated that pre-mixing peat and organic soils contributes in gaining soil strength while help the engineers to establish a new method for those problematic ground improvement in further practical and long term applications.Keywords: peat soils, organic soils, cement stabilisation, strength, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262117 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain
Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper
Abstract:
Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.
Keywords: Additive manufacturing, lean production, reproducibility, work safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846116 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting
Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh
Abstract:
In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).
Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975115 Material Concepts and Processing Methods for Electrical Insulation
Authors: R. Sekula
Abstract:
Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.
Keywords: Curing, epoxy insulation, numerical simulations, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636114 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children
Authors: Dejana Bouillet, Vlatka Domović
Abstract:
Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.
Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, interpretative phenomenological analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629113 An Introduction to the Concept of Environmental Audit: Indian Context
Authors: Pradip Kumar Das
Abstract:
Phenomenal growth of population and industry exploits the environment in varied ways. Consequently, the greenhouse effect and other allied problems are threatening mankind the world over. Protection and up gradation of environment have, therefore, become the prime necessity all of mankind for the sustainable development of environment. People in humbler walks of life including the corporate citizens have become aware of the impacts of environmental pollution. Governments of various nations have entered the picture with laws and regulations to correct and cure the effects of present and past violations of environmental practices and to obstruct future violations of good environmental disciplines. In this perspective, environmental audit directs verification and validation to ensure that the various environmental laws are complied with and adequate care has been taken towards environmental protection and preservation. The discipline of environmental audit has experienced expressive development throughout the world. It examines the positive and negative effects of the activities of an enterprise on environment and provides an in-depth study of the company processes any growth in realizing long-term strategic goals. Environmental audit helps corporations assess its achievement, correct deficiencies and reduce risk to the health and improving safety. Environmental audit being a strong management tool should be administered by industry for its own self-assessment. Developed countries all over the globe have gone ahead in environment quantification; but unfortunately, there is a lack of awareness about pollution and environmental hazards among the common people in India. In the light of this situation, the conceptual analysis of this study is concerned with the rationale of environmental audit on the industry and the society as a whole and highlights the emerging dimensions in the auditing theory and practices. A modest attempt has been made to throw light on the recent development in environmental audit in developing nations like India and the problems associated with the implementation of environmental audit. The conceptual study also reflects that despite different obstacles, environmental audit is becoming an increasing aspect within the corporate sectors in India and lastly, conclusions along with suggestions have been offered to improve the current scenario.
Keywords: Environmental audit, environmental hazards, environmental laws, environmental protection, environmental preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715112 The Effect of Nutrition Education on Adherence to the Mediterranean Diet and Sustainable Healthy Eating Behaviors in University Students
Authors: Tuba Tekin, Nurcan Baglam, Emine Dincer
Abstract:
This study aimed to examine the effects of nutrition education received by university students on sustainable healthy eating behaviors and adherence to the Mediterranean diet. The 2nd, 3rd, and 4th-grade university students studying at the Faculty of Health Sciences, Nutrition and Dietetics, Midwifery, Nursing, Physical Therapy, and Rehabilitation departments of universities in Turkey were included in the study. Students' adherence to the Mediterranean diet was evaluated using the Mediterranean Diet Adherence Scale, and their sustainable and healthy eating behaviors were evaluated using the Sustainable and Healthy Eating Behaviors Scale. In addition, the body weight and height of the students were measured by the researchers, and the Body Mass Index (BMI) value was calculated. A total of 181 students, 85 of whom were studying in the Department of Nutrition and Dietetics and 96 of whom were educated in other departments, were included in the study; 75.7% of the students in the sample are female, while 24.3% are male. The average body weight of the students was 61.17 ± 10.87 kg, and the average BMI was 22.04 ± 3.40 kg/m2. While the mean score of the Mediterranean Diet Adherence Scale was 6.72 ± 1.84, in the evaluation of adherence to the Mediterranean diet, it was determined that 25.4% of the students had poor adherence and 66.9% needed improvement. When the adherence scores of students who received and did not receive nutrition education were compared, it was discovered that the students who received nutrition education had a higher score (p < 0.05). Students who received nutrition education had a higher total score on the Sustainable and Healthy Eating Behaviors scale (p < 0.05). A moderately positive correlation was found between the Sustainable and Healthy Eating Behaviors scale total score and the Mediterranean Diet Adherence scores (p < 0.05). As a result of the linear regression analysis, it was revealed that a 1-unit increase in the Mediterranean diet adherence score would result in a 1.3-point increase in the total score of the Sustainable and Healthy Eating Behaviors scale. Sustainable and healthy diets are important for improving and developing health and the prevention of diseases. The Mediterranean diet is defined as a sustainable diet model. The findings revealed the relationship between the Mediterranean diet and sustainable nutrition and showed that nutrition education increased knowledge and awareness about sustainable nutrition and increased adherence to the Mediterranean diet. For this reason, courses or seminars on sustainable nutrition can be organized during educational periods.
Keywords: Healthy eating, Mediterranean diet, nutrition education, sustainable nutrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317111 The Effect of Cross-Curriculum of L1 and L2 on Elementary School Students’ Linguistic Proficiency: To Sympathize with Others
Authors: Reiko Yamamoto
Abstract:
This paper reports on a project to integrate Japanese (as a first language) and English (as a second language) education. This study focuses on the mutual effects of the two languages on the linguistic proficiency of elementary school students. The research team consisted of elementary school teachers and researchers at a university. The participants of the experiment were students between 3rd and 6th grades at an elementary school. The research process consisted of seven steps: 1) specifying linguistic proficiency; 2) developing the cross-curriculum of L1 and L2; 3) forming can-do statements; 4) creating a self-evaluation questionnaire; 5) executing the self-evaluation questionnaire at the beginning of the school year; 6) instructing L1 and L2 based on the curriculum; and 7) executing the self-evaluation questionnaire at the beginning of the next school year. In Step 1, the members of the research team brainstormed ways to specify elementary school students’ linguistic proficiency that can be observed in various scenes. It was revealed that the teachers evaluate their students’ linguistic proficiency on the basis of the students’ utterances, but also informed by their non-verbal communication abilities. This led to the idea that competency for understanding others’ minds through the use of physical movement or bodily senses in communication in L1 – to sympathize with others – can be transferred to that same competency in communication in L2. Based on the specification of linguistic proficiency that L1 and L2 have in common, a cross-curriculum of L1 and L2 was developed in Step 2. In Step 3, can-do statements based on the curriculum were also formed, building off of the action-oriented approach from the Common European Framework of Reference for Languages (CEFR) used in Europe. A self-evaluation questionnaire consisting of the main can-do statements was given to the students between 3rd grade and 6th grade at the beginning of the school year (Step 4 and Step 5), and all teachers gave L1 and L2 instruction based on the curriculum to the students for one year (Step 6). The same questionnaire was given to the students at the beginning of the next school year (Step 7). The results of statistical analysis proved the enhancement of the students’ linguistic proficiency. This verified the validity of developing the cross-curriculum of L1 and L2 and adapting it in elementary school. It was concluded that elementary school students do not distinguish between L1 and L2, and that they just try to understand others’ minds through physical movement or senses in any language.Keywords: Cross-curriculum of L1 and L2, elementary school education, language proficiency, sympathy with others.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308110 Genotypic and Allelic Distribution of Polymorphic Variants of Gene SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) and Their Association to the Clinical Response to Metformin in Adult Pakistani T2DM Patients
Authors: Sadaf Moeez, Madiha Khalid, Zoya Khalid, Sania Shaheen, Sumbul Khalid
Abstract:
Background: Inter-individual variation in response to metformin, which has been considered as a first line therapy for T2DM treatment is considerable. In the current study, it was aimed to investigate the impact of two genetic variants Leu125Phe (rs77474263) and Gly64Asp (rs77630697) in gene SLC47A1 on the clinical efficacy of metformin in T2DM Pakistani patients. Methods: The study included 800 T2DM patients (400 metformin responders and 400 metformin non-responders) along with 400 ethnically matched healthy individuals. The genotypes were determined by allele-specific polymerase chain reaction. In-silico analysis was done to confirm the effect of the two SNPs on the structure of genes. Association was statistically determined using SPSS software. Results: Minor allele frequency for rs77474263 and rs77630697 was 0.13 and 0.12. For SLC47A1 rs77474263 the homozygotes of one mutant allele ‘T’ (CT) of rs77474263 variant were fewer in metformin responders than metformin non-responders (29.2% vs. 35.5 %). Likewise, the efficacy was further reduced (7.2% vs. 4.0 %) in homozygotes of two copies of ‘T’ allele (TT). Remarkably, T2DM cases with two copies of allele ‘C’ (CC) had 2.11 times more probability to respond towards metformin monotherapy. For SLC47A1 rs77630697 the homozygotes of one mutant allele ‘A’ (GA) of rs77630697 variant were fewer in metformin responders than metformin non-responders (33.5% vs. 43.0 %). Likewise, the efficacy was further reduced (8.5% vs. 4.5%) in homozygotes of two copies of ‘A’ allele (AA). Remarkably, T2DM cases with two copies of allele ‘G’ (GG) had 2.41 times more probability to respond towards metformin monotherapy. In-silico analysis revealed that these two variants affect the structure and stability of their corresponding proteins. Conclusion: The present data suggest that SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) polymorphisms were associated with the therapeutic response of metformin in T2DM patients of Pakistan.
Keywords: Diabetes, T2DM, SLC47A1, Pakistan, polymorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734109 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.
Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447108 Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test
Authors: Najmeh Bolbolamiri, Maryam Setayesh Sanai, Ahmad Mirabadi
Abstract:
This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.
Keywords: stator currents monitoring, railway points, point failures, fault detection and diagnosis, Kolmogorov-Smirnov test, time-domain analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836107 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors
Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson
Abstract:
The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.Keywords: Cooking, indoor air quality, low-cost sensor, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017106 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.
Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740105 Democratization, Market Liberalization and the Raise of Vested Interests and Its Impacts on Anti-Corruption Reform in Indonesia
Authors: Ahmad Khoirul Umam
Abstract:
This paper investigates the role of vested interests and its impacts on anti-corruption agenda in Indonesia following the collapse of authoritarian regime in 1998. A pervasive and rampant corruption has been believed as the main cause of the state economy’s fragility. Hence, anti-corruption measures were implemented by applying democratization and market liberalization since the establishment of a consolidated democracy which go hand in hand with a liberal market economy is convinced to be an efficacious prescription for effective anti-corruption. The reform movement has also mandated the establishment of the independent, neutral and professional special anti-corruption agency namely Corruption Eradication Commission (KPK) to more intensify the fight against the systemic corruption. This paper will examine whether these anti-corruption measures have been effective to combat corruption, and investigate to what extend have the anti-corruption efforts, especially those conducted by KPK, been impeded by the emergence of a nexus of vested interests as the side-effect of democratization and market liberalization. Based on interviews with key stakeholders from KPK, other law enforcement agencies, government, prominent scholars, journalists and NGOs in Indonesia, it is found that since the overthrow of Soeharto, anti-corruption movement in the country have become more active and serious. After gradually winning the hearth of people, KPK successfully touched the untouchable corruption perpetrators who were previously protected by political immunity, legal protection and bureaucratic barriers. However, these changes have not necessarily reduced systemic and structural corruption practices. Ironically, intensive and devastating counterattacks were frequently posed by the alignment of business actors, elites of political parties, government, and also law enforcement agencies by hijacking state’s instruments to make KPK deflated, powerless, and surrender. This paper concludes that attempts of democratization, market liberalization and the establishment of anti-corruption agency may have helped Indonesia to reduce corruption. However, it is still difficult to imply that such anti-corruption measures have fostered the more effective anti-corruption works in the newly democratized and weakly regulated liberal economic system.
Keywords: Vested interests, democratization, market liberalization, anti-corruption, leadership.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157104 Clinical and Methodological Issues in the Research on the Rape Myth
Authors: Ana Pauna, Zbigniew Pleszewski
Abstract:
The purpose of this study is to revisit the concept of rape as represented by professionals in the literature as well as its perception (beliefs and attitudes) in the population at large and to propose methodological improvements to its measurement tool. Rape is a serious crime threatening its victim-s physical and mental health and integrity; and as such is legally prosecuted in all modern societies. The problem is not in accepting or rejecting rape as a criminal act, but rather in the vagueness of its interpretations and “justifications" maintained in the mentality of modern societies - known in the literature as the phenomenon of "rape-myth". The rapemyth can be studied from different perspectives: criminology, sociology, ethics, medicine and psychology. Its investigation requires rigorous scientific objectivity, free of passion (victims of rape are at risk of emotional bias), free of activism (social activists, even if wellintentioned are also biased), free of any pre-emptive assumptions or prejudices. To apply a rigorous scientific procedure, we need a solid, valid and reliable measurement. Rape is a form of heterosexual or homosexual aggression, violently forcing the victim to give-in in the sexual activity of the aggressor against her/his will. Human beings always try to “understand" or find a reason justifying their acts. Psychological literature provides multiple clinical and experimental examples of it; just to mention the famous studies by Milgram on the level of electroshock delivered by the “teacher" towards the “learner" if “scientifically justifiable" or the studies on the behavior of “prisoners" and the “guards" and many other experiments and field observations. Sigmund Freud presented the phenomenon of unconscious justification and called it rationalization. The multiple justifications, rationalizations and repeated opinions about sexual behavior contribute to a myth maintained in the society. What kind of “rationale" our societies apply to “understand" the non-consensual sexual behavior? There are many, just to mention few: • Sex is a ludistic activity for both participants, therefore – even if not consented – it should bring pleasure to both. • Everybody wants sex, but only men are allowed to manifest it openly while women have to pretend the opposite, thus men have to initiate sexual behavior and women would follow. • A person who strongly needs sex is free to manifest it and struggle to get it; the person who doesn-t want it must not reveal her/his sexual attraction and avoid risky situations; otherwise she/he is perceived as a promiscuous seducer. • A person who doesn-t fight against the sexual initiator unconsciously accepts the rape (does it explain why homosexual rapes are reported less frequently than rapes against women?). • Women who are raped deserve it because their wardrobe is very revealing and seducing and they ''willingly'' go to highly risky places (alleys, dark roads, etc.). • Men need to ventilate their sexual energy and if they are deprived of a partner their urge to have sex is difficult to control. • Men are supposed to initiate and insist even by force to have sex (their testosterone makes them both sexual and aggressive). The paper overviews numerous cultural beliefs about masculine versus feminine behavior and their impact on the “rape myth".Keywords: Rape Myth components, psycho-social factors, testing, Likert-type scale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110103 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399102 Studying the Effect of Climate Change on the Conditions of Isfahan-s Province Tourism
Authors: A.Gandomkar, F. Khorasanizadeh
Abstract:
Tourism is a phenomenon respected by the human communities since a long time ago. It has been evoloving continually based on a variety of social and economic needs and with respect to increasingly development of communication and considerable increase of tourist-s number and resulted exchange income has attained much out come such as employment for the communities. or the purpose of tourism development in this zone suitable times and locations need to be specified in the zone for the tourist-s attendance. One of the most important needs of the tourists is the knowledge of climate conditions and suitable times for sightseeing. In this survey, the climate trend condition has been identified for attending the tourists in Isfahan province using the modified tourism climate index (TCI) as well as SPSS, GIS, excel, surfer softwares. This index evoluates systematically the climate conditions for tourism affairs and activities using the monthly maximum mean parameters of daily temperature, daily mean temperature, minimum relative humidity, daily mean relative humidity, precipitation (mm), total sunny hours, wind speed and dust. The results obtaind using kendal-s correlation test show that the months January, February, March, April, May, June, July, August, September, October, November and December are significant and have an increasing trend that indicates the best condition for attending the tourists. S, P, T mean , T max and dust are estimated from 1976-2005 and do kendal-s correlation test again to see which parameter has been effective. Based on the test, we also observed on the effective parameters that the rate of dust in February, March, April, May, June, July, August, October and November is decreasing and precipitation in September and January is increasing and also the radiation rate in May and August is increasing that indicate a better condition of convenience. Maximum temperature in June is also decreasing. Isfahan province has two spring and fall peaks and the best places for tourism are in the north and western areas.
Keywords: Climate, Tourism, Correlation Test, Tourism Climate Index, Isfahan Province
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700101 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market
Authors: Seema Singh, Puja Anand, Alok Bhasin
Abstract:
The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.Keywords: Design Intervention, Eco-Friendly, Healthy Interiors, Indigenous, Organic Wool, Pastoralism, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393100 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery
Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr
Abstract:
The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.Keywords: Bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149899 Extremism among College and High School Students in Moscow: Diagnostics Features
Authors: Puzanova Zhanna Vasilyevna, Larina Tatiana Igorevna, Tertyshnikova Anastasia Gennadyevna
Abstract:
In this day and age, extremism in various forms of its manifestation is a real threat to the world community, the national security of a state and its territorial integrity, as well as to the constitutional rights and freedoms of citizens. Extremism, as it is known, in general terms described as a commitment to extreme views and actions, radically denying the existing social norms and rules. Supporters of extremism in the ideological and political struggles often adopt methods and means of psychological warfare, appeal not to reason and logical arguments, but to emotions and instincts of the people, to prejudices, biases, and a variety of mythological designs. They are dissatisfied with the established order and aim at increasing this dissatisfaction among the masses. Youth extremism holds a specific place among the existing forms and types of extremism. In this context in 2015, we conducted a survey among Moscow college and high school students. The aim of this study was to determine how great or small is the difference in understanding and attitudes towards extremism manifestations, inclination and readiness to take part in extremist activities and what causes this predisposition, if it exists. We performed multivariate analysis and found the Russian college and high school students' opinion about the extremism and terrorism situation in our country and also their cognition on these topics. Among other things, we showed, that the level of aggressiveness of young people were not above the average for the whole population. The survey was conducted using the questionnaire method. The sample included college and high school students in Moscow (642 and 382, respectively) by method of random selection. The questionnaire was developed by specialists of RUDN University Sociological Laboratory and included both original questions (projective questions, the technique of incomplete sentences), and the standard test Dayhoff S. to determine the level of internal aggressiveness. It is also used as an experiment, the technique of study option using of FACS and SPAFF to determine the psychotypes and determination of non-verbal manifestations of emotions. The study confirmed the hypothesis that in respondents’ opinion, the level of aggression is higher today than a few years ago. Differences were found in the understanding of and respect for such social phenomena as extremism, terrorism, and their danger and appeal for the two age groups of young people. Theory of psychotypes, SPAFF (specific affect cording system) and FACS (facial action cording system) are considered as additional techniques for the diagnosis of a tendency to extreme views. Thus, it is established that diagnostics of acceptance of extreme views among young people is possible thanks to simultaneous use of knowledge from the different fields of socio-humanistic sciences. The results of the research can be used in a comparative context with other countries and as a starting point for further research in the field, taking into account its extreme relevance.Keywords: Extremism, youth extremism, diagnostics of extremist manifestations, forecast of behavior, Sociological polls, theory of psychotypes, FACS, SPAFF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181898 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application
Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian
Abstract:
The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.
Keywords: Hole transporting layer, lead-free, perovskite Solar cell, SCAPS-1D, Sn-Ge based material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814