Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30178
Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test

Authors: Najmeh Bolbolamiri, Maryam Setayesh Sanai, Ahmad Mirabadi

Abstract:

This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.

Keywords: stator currents monitoring, railway points, point failures, fault detection and diagnosis, Kolmogorov-Smirnov test, time-domain analysis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081097

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419

References:


[1] B. O. Oyebande and A. C. Renfrew, "Condition monitoring of railway electric point machine", IEEE Proc.-Electr. Power Appl., Vol. 149, No. 6, 2002.
[2] A. Kelly and M. J. Harris, "Management of industrial maintenance", Butterwords, London, 1978.
[3] M. Bassevile and I. V. Nikiforov, "Detection of abrupt changes, Theory and Application", Prentice-Hall International, INC., 2005.
[4] C. Kar, A and R. Mohanty, "Application of KS test in ball bearing fault diagnosis", Journal of sound and vibration, Vol. 269, 2004.
[5] Cannon Jordan, "Statistical analysis and algorithms for online change detection in real time physiological data", Master thesis, 2009.
[6] X. Wang and V. Maxis."Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov-Smirnov test", Journal of Sound and Vibration, Vol. 327, 2009.
[7] Feiyun Cong, "Kolmogorov-Smirnov test for rolling bearing performance degradation assessment and prognosis", Journal of vibration and control, Vol. 17, No. 9, 2010.
[8] C. Kar and A. R. Mohanty, " Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test", Journal of Sound and Vibration 290, pp. 337-368, 2006.
[9] LD. Hall and D. Mba, "Acoustic emmissions diagnosis of rotor-stator rubs using the KS statistic", Mechanical Systems and Signal Processing, Vol. 18, 2004.