Search results for: microbial fuel cells.
639 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models
Authors: Paola Lecca
Abstract:
Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.
Keywords: Mathematical structure, algorithmic implementation, biochemical network models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557638 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods
Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar
Abstract:
Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.
Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018637 On the Mathematical Model of Vascular Endothelial Growth Connected with a Tumor Proliferation
Authors: N. Khatiashvili, Ch. Pirumova, V. Akhobadze
Abstract:
In the paper the mathematical model of tumor growth is considered. New capillary network formation, which supply cancer cells with the nutrients, is taken into the account. A formula estimating a tumor growth in connection with the number of capillaries is obtained.Keywords: Differential Equations, Mathematical Models, Vascular Endothelial, Tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227636 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: Black Sea hydrates, depressurization, turbidites, HydrateResSim.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358635 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)
Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha
Abstract:
Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be acceleratedKeywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064634 Successful Straw Combustion Technology in Zluticka Heating Plant
Authors: P. Volakova, M. Mika, V. Verner, B. Klapste, O. Jankovsky
Abstract:
We successfully developed and tested a new separation layer solving problems with unmanageable deposits inside the boilers of Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw ash compositions in K2OCaO- SiO2 phase diagram and illustrated that they are in the area of low-melting eutectic points. To prevent the melting of ash and the formation of deposits, we modified ash compositions by injecting additives into biomass fuel, and thus effectively suppressed deposits in a burner.Keywords: Biomass, straw, combustion, deposit, heat, additives
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489633 Analysis of Possible Causes of Fukushima Disaster
Authors: Abid Hossain Khan, Syam Hasan, M. A. R. Sarkar
Abstract:
Fukushima disaster is one of the most publicly exposed accidents in a nuclear facility which has changed the outlook of people towards nuclear power. Some have used it as an example to establish nuclear energy as an unsafe source, while others have tried to find the real reasons behind this accident. Many papers have tried to shed light on the possible causes, some of which are purely based on assumptions while others rely on rigorous data analysis. To our best knowledge, none of the works can say with absolute certainty that there is a single prominent reason that has paved the way to this unexpected incident. This paper attempts to compile all the apparent reasons behind Fukushima disaster and tries to analyze and identify the most likely one.
Keywords: Fuel meltdown, Fukushima disaster, manmade calamity, nuclear facility, tsunami.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183632 Aquatic Modeling: An Interplay between Scales
Authors: Christina G. Siontorou
Abstract:
This paper presents an integrated knowledge-based approach to multi-scale modeling of aquatic systems, with a view to enhancing predictive power and aiding environmental management and policy-making. The basic phases of this approach have been exemplified in the case of a bay in Saronicos Gulf (Attiki, Greece). The results showed a significant problem with rising phytoplankton blooms linked to excessive microbial growth, arisen mostly due to increased nitrogen inflows; therefore, the nitrification/denitrification processes of the benthic and water column sub-systems have provided the quality variables to be monitored for assessing environmental status. It is thereby demonstrated that the proposed approach facilitates modeling choices and implementation option decisions, while it provides substantial support for knowledge and experience capitalization in long-term water management.
Keywords: Aquatic ecosystem, integrated modeling, multi-scale modeling, ontological platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329631 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: A Case Study on Contaminated Site Soil
Authors: M. Allagoa, A. Al-Tabbaa
Abstract:
The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to reduce the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of binders, with a focus on Total Heavy Metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk (ILCR) assessments and other indices to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0-320.5 kPa, while THM levels with a combination of Ground granulated blast furnace slag and Magnesium oxide, Portland cement and Pulverised fuel ash were less than 10 µg/l. Portland cement was below 1 µg/l. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 - 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), risk allowable daily dose intake (ADI), and risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.
Keywords: Risk daily dose intake, risk chronic daily intake, incremental lifetime cancer risk, ILCR, novel binders, additives binders, hazard index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250630 Residual Stresses in Thermally Sprayed Gas Turbine Components
Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd
Abstract:
In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692629 Modeling and Simulation of a Hybrid Scooter
Abstract:
This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.
Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3345628 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions
Abstract:
In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.
Keywords: Turbofan, power, efficiency, trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3988627 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.
Keywords: HVOF, Temperature, Thickness, Velocity, WC- 12Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963626 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology
Authors: K. Beheshti Maal, R. Shafiee
Abstract:
According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.
Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5020625 Food Safety Aspects of Pesticide Residues in Spice Paprika
Authors: Sz. Klátyik, B. Darvas, M. Mörtl, M. Ottucsák, E. Takács, H. Bánáti, L. Simon, G. Gyurcsó, A. Székács
Abstract:
Environmental and health safety of condiments used for spicing food products in food processing or by culinary means receive relatively low attention, even though possible contamination of spices may affect food quality and safety. Contamination surveys mostly focus on microbial contaminants or their secondary metabolites, mycotoxins. Chemical contaminants, particularly pesticide residues, however, are clearly substantial factors in the case of given condiments in the Capsicum family including spice paprika and chilli. To assess food safety and support the quality of the Hungaricum product spice paprika, the pesticide residue status of spice paprika and chilli is assessed on the basis of reported pesticide contamination cases and non-compliances in the Rapid Alert System for Food and Feed of the European Union since 1998.
Keywords: Spice paprika, Capsicum, pesticide residues, RASFF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402624 Haar wavelet Method for Solving Initial and Boundary Value Problems of Bratu-type
Authors: S.G.Venkatesh, S.K.Ayyaswamy, G.Hariharan
Abstract:
In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.
Keywords: Haar wavelet method, Bratu's problem, boundary value problems, initial value problems, adomain decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965623 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation
Authors: Chih-Wei Chao, Jiashing Yu
Abstract:
To mimic the natural circumstances of cell growth in an organism, we present three-dimensional (3D) scaffolds fabricated by microfluidics for cultivation. This work investigates the cellular behaviors of rat cardiomyocytes in gelatin 3D scaffolds compared to those on 2D control, such as proliferation, viability and morphology. We found that the scaffolds may induce skeletal differentiation of H9c2 cells.
Keywords: Microfluidic device, H9c2, tissue engineering, 3D scaffolds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066622 Phytoremediation of Wastewater Using Some of Aquatic Macrophytes as Biological Purifiers for Irrigation Purposes
Authors: Dilshad G.A. Ganjo, Ahmed I. Khwakaram
Abstract:
An attempt was made for availability of wastewater reuse/reclamation for irrigation purposes using phytoremediation “the low cost and less technology", using six local aquatic macrophytes “e.g. T. angustifolia, B. maritimus, Ph. australis, A. donax, A. plantago-aquatica and M. longifolia (Linn)" as biological waste purifiers. Outdoor experiments/designs were conducted from May 03, 2007 till October 15, 2008, close to one of the main sewage channels of Sulaimani City/Iraq*. All processes were mainly based on conventional wastewater treatment processes, besides two further modifications were tested, the first was sand filtration pots, implanted by individual species of experimental macrophytes and the second was constructed wetlands implanted by experimental macrophytes all together. Untreated and treated wastewater samples were analyzed for their key physico-chemical properties (only heavy metals Fe, Mn, Zn and Cu with particular reference to removal efficiency by experimental macrophytes are highlighted in this paper). On the other hand, vertical contents of heavy metals were also evaluated from both pots and the cells of constructed wetland. After 135 days, macrophytes were harvested and heavy metals were analyzed in their biomass (roots/shoots) for removal efficiency assessment (i.e. uptake/ bioaccumulation rate). Results showed that; removal efficiency of all studied heavy metals was much higher in T. angustifolia followed by Ph. Australis, B. maritimus and A. donax in triple experiment sand pots. Constructed wetland experiments have revealed that; the more replicated constructed wetland cells the highest heavy metal removal efficiency was indicated.
Keywords: Aquatic Macrophytes, Heavy Metals (Fe, Mn, Zn and Cu), Phytoremediation and Removal Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346621 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum
Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima
Abstract:
The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.
Keywords: Biomass, diatom, flocculation, microalgae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365620 Microbial Leaching Process to Recover Valuable Metals from Spent Petroleum Catalyst Using Iron Oxidizing Bacteria
Authors: Debabrata Pradhan, Dong J. Kim, Jong G. Ahn, Seoung W. Lee
Abstract:
Spent petroleum catalyst from Korean petrochemical industry contains trace amount of metals such as Ni, V and Mo. Therefore an attempt was made to recover those trace metal using bioleaching process. Different leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size of spent catalyst particle were studied to evaluate their effects on the leaching efficiency. All the three metal ions like Ni, V and Mo followed dual kinetics, i.e., initial faster followed by slower rate. The percentage of leaching efficiency of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. In addition, the lower leaching efficiency of Mo was observed due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst.Keywords: Bioleaching, diffusion control, shrinking core, spentpetroleum catalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020619 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant
Authors: S. W. Chen, W. K. Lin, J. R. Wang, C. Shih, H. T. Lin, H. C. Chang, W. Y. Li
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the overpressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.
Keywords: TRACE, Safety analysis, BWR/6, FRAPTRAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185618 Green Building and Energy Saving
Authors: Nahed Ayedh Al-Hajeri
Abstract:
In a world of climate change and limited fossil fuel resources, renewable energy sources are playing an increasingly important role. Due to industrializations and population growth our economy and technologies today largely depend upon natural resources, which are not replaceable. Approximately 90% of our energy consumption comes from fossil fuels (viz. coal, oil and natural gas). The irony is that these resources are depleting. Also, the huge consumption of fossil fuels has caused visible damage to the environment in various forms viz. global warming, acid rains etc.
Keywords: Kilo watt, kilo watt hour, carbon di-oxide, photovoltaic, environmental protection agency, Kwaiti dinar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4168617 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.
Keywords: Forest soil, mineralization rate, soil respiration rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472616 The Path to Web Intelligence Maturity
Authors: Zeljko Panian
Abstract:
Web intelligence, if made personal, can fuel the process of building communications around the interests and preferences of each individual customer or prospect, by providing specific behavioral insights about each individual. To become fully efficient, Web intelligence must reach a stage of a high-level maturity, passing throughout a process that involves five steps: (1) Web site analysis; (2) Web site and advertising optimization; (3) Segment targeting; (4) Interactive marketing (online only); and (5) Interactive marketing (online and offline). Discussing these steps in detail, the paper uncovers the real gold mine that is personal-level Web intelligence.
Keywords: Web intelligence, web analytics, informationtechnology (IT), interactive marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636615 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.
Keywords: Sliding mode control, pulse-width modulation, hysteresis modulation, DC-DC converter, parallel multi-cells converter, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778614 The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil
Authors: H. Dvořáčková, I. Mikajlo, J. Záhora, J. Elbl
Abstract:
Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost.Keywords: Leaching of nitrogen, soil, biochar, compost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031613 Impact of Herbicides on Soil Biology in Rapeseed
Authors: M. Eickermann, M. K. Class, J. Junk
Abstract:
Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.Keywords: Cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745612 Role of Biorefining and Biomass Utilization in Environmental Control
Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu
Abstract:
The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.
Keywords: Bioenergy, Biomass conversion, Biorefining, Efficient utilisation of night soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936611 Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic
Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman
Abstract:
An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.
Keywords: Advanced Driver Assistance Systems, Eye-Tracking, Hazard Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632610 A Set Theory Based Factoring Technique and Its Use for Low Power Logic Design
Authors: Padmanabhan Balasubramanian, Ryuta Arisaka
Abstract:
Factoring Boolean functions is one of the basic operations in algorithmic logic synthesis. A novel algebraic factorization heuristic for single-output combinatorial logic functions is presented in this paper and is developed based on the set theory paradigm. The impact of factoring is analyzed mainly from a low power design perspective for standard cell based digital designs in this paper. The physical implementation of a number of MCNC/IWLS combinational benchmark functions and sub-functions are compared before and after factoring, based on a simple technology mapping procedure utilizing only standard gate primitives (readily available as standard cells in a technology library) and not cells corresponding to optimized complex logic. The power results were obtained at the gate-level by means of an industry-standard power analysis tool from Synopsys, targeting a 130nm (0.13μm) UMC CMOS library, for the typical case. The wire-loads were inserted automatically and the simulations were performed with maximum input activity. The gate-level simulations demonstrate the advantage of the proposed factoring technique in comparison with other existing methods from a low power perspective, for arbitrary examples. Though the benchmarks experimentation reports mixed results, the mean savings in total power and dynamic power for the factored solution over a non-factored solution were 6.11% and 5.85% respectively. In terms of leakage power, the average savings for the factored forms was significant to the tune of 23.48%. The factored solution is expected to better its non-factored counterpart in terms of the power-delay product as it is well-known that factoring, in general, yields a delay-efficient multi-level solution.
Keywords: Factorization, Set theory, Logic function, Standardcell based design, Low power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791