Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation
Authors: Chih-Wei Chao, Jiashing Yu
Abstract:
To mimic the natural circumstances of cell growth in an organism, we present three-dimensional (3D) scaffolds fabricated by microfluidics for cultivation. This work investigates the cellular behaviors of rat cardiomyocytes in gelatin 3D scaffolds compared to those on 2D control, such as proliferation, viability and morphology. We found that the scaffolds may induce skeletal differentiation of H9c2 cells.
Keywords: Microfluidic device, H9c2, tissue engineering, 3D scaffolds.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096749
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070References:
Ziolkowska, K., Stelmachowska, A., Kwapiszewski, R., Chudy, M., Dybko, A., and Brzozka, Z., Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip, Biosensors & Bioelectronics40 (2013) 68-74.[2] Salerno, A., Levato, R., Mateos-Timoneda, M. A., Engel, E., Netti, P. A., and Planell, J. A., Modular polylactic acid microparticle-based scaffolds prepared via microfluidic emulsion/solvent displacementnchymal stem cells interaction study, Journal of Biomedical Materials Research Part A101A(2013) 720-732.
[3] He, M., Wang, Z. G., Cao, Y., Zhao, Y. T., Duan, B., Chen, Y., Xu, M., and Zhang, L. N., Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility, Biomacromolecules 15(2014) 3358-3365.
[4] Cao, Y., Xiong, D. S., Niu, Y. X., Mei, Y., Yin, Z. W., and Gui, J. C., Compressive Properties and Creep Resistance of a Novel, Porous, Semidegradable Poly(vinyl alcohol)/Poly(lactic-co-glycolic acid) Scaffold for Articular Cartilage Repair, J. Appl. Polym. Sci. (2014) 131.
[5] Singh, D., Nayak, V., and Kumar, A., Proliferation of Myoblast Skeletal Cells on Three-Dimensional Supermacroporous Cryogels, Int. J. Biol. Sci.6(2010) 371-381.
[6] Kim, J., Li, W. W. A., Sands, W., and Mooney, D. J., Effect of Pore Structure of Macroporous Poly(Lactide-co-Glycolide) Scaffolds on the in Vivo Enrichment of Dendritic Cells, ACS Appl. Mater. Interfaces (2014) 8505-8512.
[7] Drury, J. L., and Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials24(2003) 4337-4351.
[8] Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., and Lory, P., Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells, J. Biol. Chem.27(1999) 29063-29070.
[9] Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardao, V. A., Oliveira, P. J., and Carvalho, R. A. Metabolic Remodeling During H9c2 Myoblast Differentiation: Relevance for In Vitro Toxicity Studies, Cardiovasc. Toxicol.(2011) 180-190.
[10] Ricotti, L., Polini, A., Genchi, G. G., Ciofani, G., Iandolo, D., Vazao, H., Mattoli, V., Ferreira, L., Menciassi, A., and Pisignano, D. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds, Biomedical Materials7. (2012)
[11] Chung, K. Y., Mishra, N. C., Wang, C. C., Lin, F. H., and Lin, K. H. Fabricating scaffolds by microfluidics, Biomicrofluidics3. (2009)