Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
The Path to Web Intelligence Maturity

Authors: Zeljko Panian

Abstract:

Web intelligence, if made personal, can fuel the process of building communications around the interests and preferences of each individual customer or prospect, by providing specific behavioral insights about each individual. To become fully efficient, Web intelligence must reach a stage of a high-level maturity, passing throughout a process that involves five steps: (1) Web site analysis; (2) Web site and advertising optimization; (3) Segment targeting; (4) Interactive marketing (online only); and (5) Interactive marketing (online and offline). Discussing these steps in detail, the paper uncovers the real gold mine that is personal-level Web intelligence.

Keywords: Web intelligence, web analytics, informationtechnology (IT), interactive marketing.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330341

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251

References:


[1] M. Todaro, Internet Marketing Methods Revealed: The Complete Guide to Becoming an Internet Marketing Expert. Ocala, FL: Atlantic Publishing Group. 2009, p 8
[2] J. Pulizzi and N. Barrett, Get Content Get Customers: Turn Prospects into Buyers with Content Marketing. New York, NJ: McGraw-Hill, 2009, 233-234
[3] R. Rabins and J. Park, „Who is the Who? Web analytics alone doesn't provide precision tuning of information and data access". InfoManagement Direct, April 02, 2009. Available: http://www.information- management. com/infodirect/2009_115/crm_web_analytic s_online_mar keting-10015142- 1 .html?ET=informationmgmt:e886:148552a:&st=email
[4] M. Megna, „Web Analytics Primer: Five Metrics Demystified". September 18, 2008. Available http://www.ecommerce- guide. com/solutions/adverti sing/article .php/3772496
[5] G. Meghabghab and A. Kandel, Search Engines, Link Analysis, and User's Web Behavior: A Unifying Web Mining Approach (Studies in Computational Intelligence). Berlin/Heidelberg, Germany: Springer Verlag, 2006, pp 110-111
[6] J. Henderson, „A New Mandate for Web Analytics". DM Review Special Report, January 29, 2008. Available: http://www.dmreview.com
[7] S. Atchison, „Web Analytics for Social Media". March 2, 2009. Available: http://www.clickz.com/3632960
[8] I. K. Nagy and C. Gaspar-Papanek, „User Behavior Analysis Based on Time Spent on Web Pages," in Web Mining Applications in E-commerce and E-services (Studies in Computational Intelligence), I-H. Ting and H-J. Wu, Eds. Berlin/Heidelberg, Germany: Springer Verlag, 2009, pp 117-136
[9] J. Arnold, I. Lurie, M. Dickinson, and E. Marsten, Web Marketing All-in-One Desk Reference For Dummies. Hoboken, NJ: Wiley Publishing, 2009, p 280-289
[10] C. Gliedman, S. Yates, E. Hubbert, and M. A. Rogan, „The Forrester WaveTM: Service Desk Management Tools, Q2 2008". April 7, 2008. Available: http://www.forrester.com
[11] A. Kaushik, Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity. Indianapolis, IN: Wiley Publishing, 2009, pp 94-122
[12] P. I. Hofgesang, „Online Mining of Web Usage Data: An Overview," in Web Mining Applications in E-commerce and E-services (Studies in Computational Intelligence), I-H. Ting and H-J. Wu, Eds. Berlin/Heidelberg, Germany: Springer Verlag, 2009, pp 1-24
[13] E. Anderson, "Inbound Marketing Goes Mainstream".September 19, 2005. Available: http://www.forrester.com
[14] B. Clifton, Advanced Web Metrics with Google Analytics, 2nd Edition. Hoboken, NJ: Wiley Publishing, 2010, p 23