Search results for: Pressure gradient
956 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures
Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu
Abstract:
This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.Keywords: Swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824955 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering
Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin
Abstract:
The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872954 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560953 Changes of in vitro Cytokine Production induced by δ-Lactams
Authors: Y. Baba hamed, A. Medjdoub, H. Merzouk, M. Narce
Abstract:
The aim of this work was to study the in vitro effects of δ-lactam 1 and its 4-chlorophenyl derivative 2, on the proliferative responses of human lymphocytes and Th1 and Th2 cytokine secretion. The possible protective role of vitamin E on intracellular stress oxidative induced by these compounds was also investigated. Peripheral blood lymphocytes were isolated using differential centrifugation on a density gradient of Histopaque. They were cultured with mitogen concanavalin A, vitamin E (10 μM) and with different concentrations of the compounds 1 and 2 (0.1 to 10 μM). Proliferation (MTT assay), IL-2, INFγ and IL-4 (Elisa kits), intracellular superoxide anion were determined. 1 and 2 were immunostimulant and increased cytokine secretion with a shift away from Th1 response to Th2. These properties were however accompanied by an increase in intracellular oxidative stress. The presence of vitamin E exhibited protective effects by reducing δ- lactam-induced superoxide anion generation in lymphocytes.Keywords: Cytokines, δ-Lactams, In vitro Lymphocyte Proliferation, Superoxide Anion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3874952 Impact of Preksha Meditation on Academic Anxiety of Female Teenagers
Authors: Neelam Vats, Madhvi Pathak Pillai, Rajender Lal, Indu Dabas
Abstract:
The pressure of scoring higher marks to be able to get admission in a higher ranked institution has become a social stigma for school students. It leads to various social and academic pressures on them, causing psychological anxiety. This undue stress on students sometimes may even steer to aggressive behavior or suicidal tendencies. Human mind is always surrounded by the some desires, emotions and passions, which usually disturbs our mental peace. In such a scenario, we look for a solution that helps in removing all the obstacles of mind and make us mentally peaceful and strong enough to be able to deal with all kind of pressure. Preksha meditation is one such technique which aims at bringing the positive changes for overall transformation of personality. Hence, the present study was undertaken to assess the impact of Preksha Meditation on the academic anxiety on female teenagers. The study was conducted on 120 high school students from the capital city of India. All students were in the age group of 13-15 years. They also belonged to similar social as well as economic status. The sample was equally divided into two groups i.e. experimental group (N = 60) and control group (N = 60). Subjects of the experimental group were given the intervention of Preksha Meditation practice by the trained instructor for one hour per day, six days a week, for three months for the first experimental stage and another three months for the second experimental stage. The subjects of the control group were not assigned any specific type of activity rather they continued doing their normal official activities as usual. The Academic Anxiety Scale was used to collect data during multi-level stages i.e. pre-experimental stage, post-experimental stage phase-I, and post-experimental stage phase-II. The data were statistically analyzed by computing the two-tailed-‘t’ test for inter group comparison and Sandler’s ‘A’ test with alpha = or p < 0.05 for intra-group comparisons. The study concluded that the practice for longer duration of Preksha Meditation practice brings about very significant and beneficial changes in the pattern of academic anxiety.
Keywords: Academic anxiety, academic pressure, Preksha, meditation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869951 Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding
Authors: Ahmad K. Jassim, Raheem Kh. Al-Subar
Abstract:
Friction stir welding is a modern and an environmentally friendly solid state joining process used to joint relatively lighter family of materials. Recently, friction stir spot welding has been used instead of resistance spot welding which has received considerable attention from the automotive industry. It is environmentally friendly process that eliminated heat and pollution. In this research, friction stir spot welding has been used to study the possibility to weld AA1100 aluminum alloy sheet with 3 mm thickness by overlapping the edges of sheet as lap joint. The process was done using a drilling machine instead of milling machine. Different tool rotational speeds of 760, 1065, 1445, and 2000 RPM have been applied with manual and automatic compression to study their effect on the quality of welded joints. Heat generation, pressure applied, and depth of tool penetration have been measured during the welding process. The result shows that there is a possibility to weld AA1100 sheets; however, there is some surface defect that happened due to insufficient condition of welding. Moreover, the relationship between rotational speed, pressure, heat generation and tool depth penetration was created.
Keywords: Friction, spot, stir, environmental, sustainable, AA1100 aluminum alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145950 Error-Robust Nature of Genome Profiling Applied for Clustering of Species Demonstrated by Computer Simulation
Authors: Shamim Ahmed Koichi Nishigaki
Abstract:
Genome profiling (GP), a genotype based technology, which exploits random PCR and temperature gradient gel electrophoresis, has been successful in identification/classification of organisms. In this technology, spiddos (Species identification dots) and PaSS (Pattern similarity score) were employed for measuring the closeness (or distance) between genomes. Based on the closeness (PaSS), we can buildup phylogenetic trees of the organisms. We noticed that the topology of the tree is rather robust against the experimental fluctuation conveyed by spiddos. This fact was confirmed quantitatively in this study by computer-simulation, providing the limit of the reliability of this highly powerful methodology. As a result, we could demonstrate the effectiveness of the GP approach for identification/classification of organisms.
Keywords: Fluctuation, Genome profiling (GP), Pattern similarity score (PaSS), Robustness, Spiddos-shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539949 Effects of Energy Consumption on Indoor Air Quality
Authors: M. Raatikainen, J-P. Skön, M. Johansson, K. Leiviskä, M. Kolehmainen
Abstract:
Continuous measurements and multivariate methods are applied in researching the effects of energy consumption on indoor air quality (IAQ) in a Finnish one-family house. Measured data used in this study was collected continuously in a house in Kuopio, Eastern Finland, during fourteen months long period. Consumption parameters measured were the consumptions of district heat, electricity and water. Indoor parameters gathered were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2) and carbon monoxide (CO) and differential air pressure. In this study, self-organizing map (SOM) and Sammon's mapping were applied to resolve the effects of energy consumption on indoor air quality. Namely, the SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. Accompanying that, the Sammon's mapping method was used to cluster pre-processed data to find similarities of the variables, expressing distances and groups in the data. The methods used were able to distinguish 7 different clusters characterizing indoor air quality and energy efficiency in the study house. The results indicate, that the cost implications in euros of heating and electricity energy vary according to the differential pressure, concentration of carbon dioxide, temperature and season.
Keywords: Indoor air quality, Energy efficiency, Self- organizing map, Sammon's mapping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879948 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.
Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126947 Free Vibration Analysis of Functionally Graded Beams
Authors: Gholam Reza Koochaki
Abstract:
This work presents the highly accurate numerical calculation of the natural frequencies for functionally graded beams with simply supported boundary conditions. The Timoshenko first order shear deformation beam theory and the higher order shear deformation beam theory of Reddy have been applied to the functionally graded beams analysis. The material property gradient is assumed to be in the thickness direction. The Hamilton-s principle is utilized to obtain the dynamic equations of functionally graded beams. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. Comparison of the numerical results for the homogeneous beam with Euler-Bernoulli beam theory results show that the derived model is satisfactory.Keywords: Functionally graded beam, Free vibration, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131946 Structural Analysis of Aircraft Wing Using Finite Element Analysis
Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta
Abstract:
Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.
Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563945 Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System
Authors: Mutuku Muvengei, John Kihiu
Abstract:
In this paper, a bond graph dynamic model for a valvecontrolled hydraulic cylinder has been developed. A simplified bond graph model of the inter-actuator interactions in a multi-cylinder hydraulic system has also been presented. The overall bond graph model of a valve-controlled hydraulic cylinder was developed by combining the bond graph sub-models of the pump, spool valve and the actuator using junction structures. Causality was then assigned in order to obtain a computational model which could be simulated. The causal bond graph model of the hydraulic cylinder was verified by comparing the open loop state responses to those of an ODE model which had been developed in literature based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude and the response times, thus indicating that the developed model represents the hydraulic dynamics of a valve-controlled cylinder. A simplified model for interactuator interaction was presented by connecting an effort source with constant pump pressure to the zero-junction from which the cylinders in a multi-cylinder system are supplied with a constant pressure from the pump. On simulating the state responses of the developed model under different situations of cylinder operations, indicated that such a simple model can be used to predict the inter-actuator interactions.Keywords: Bond graphs, Inter-actuator interactions, Valvecontrolledhydraulic cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3036944 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions
Authors: Jamal S. Yassin
Abstract:
This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.
Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736943 Error Factors in Vertical Positioning System
Authors: Hyun-Gwang Cho, Wan-Seok Yang, Su-Jin Kim, Jeong-Seok Oh, Chun-Hong Park
Abstract:
Machine tools are improved capacity remarkably during the 20th century. Improving the precision of machine tools are related with precision of products and accurate processing is always associated with the subject of interest. There are a lot of the elements that determine the precision of the machine, as guides, motors, structure, control, etc. In this paper we focused on the phenomenon that vertical movement system has worse precision than horizontal movement system even they were made up with same components. The vertical movement system needs to be studied differently from the horizontal movement system to develop its precision. The vertical movement system has load on its transfer direction and it makes the movement system weak in precision than the horizontal one. Some machines have mechanical counter balance, hydraulic or pneumatic counter balance to compensate the weight of the machine head. And there is several type of compensating the weight. It can push the machine head and also can use chain or wire lope to transfer the compensating force from counter balance to machine head. According to the type of compensating, there could be error from friction, pressure error of hydraulic or pressure control error. Also according to what to use for transferring the compensating force, transfer error of compensating force could be occur.
Keywords: Chain chordal action, counter balance, setup error, vertical positioning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101942 Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image
Authors: Pil Un Kim, Yunjung Lee, Gihyoun Lee, Jin Ho Cho, Myoung Nam Kim
Abstract:
In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.
Keywords: Angle measurement, Optic disc, Retina vessel, Vessel progression orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417941 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720940 Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell
Authors: M.Hosseinjani Zamenjani, A.R.Tahmasebi Birgani, M.R.Isvandzibaei
Abstract:
Vibration of thin cylindrical shells made of a functionally gradient material composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its outer surface and stainless steel on its inner surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.Keywords: Nickel, Stainless Steel, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313939 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.
Keywords: Energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208938 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Element Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular polyhedral meshes have many advantages. One way to build such meshes consists in constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, i.e. elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: first, we present a gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.
Keywords: Anisotropic Voronoi Diagrams, Meshes for Numerical Simulations, Optimisation, Volumic Polyhedral Meshing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59937 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902936 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316935 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test
Authors: Reza Ziaie Moayed, Ehsan Azini
Abstract:
Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.
Keywords: Jet grouting column, Soil improvement, Numerical modeling, In-situ loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037934 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine
Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir
Abstract:
An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775933 Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles
Authors: B. Tirandazi, M. Mehrpooya, A. Vatani
Abstract:
This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.
Keywords: exergy; Valve; CRP; refrigeration cycle; propane refrigerant; C2+ Recovery; Ethane Recovery;.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208932 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft
Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee
Abstract:
Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006931 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure
Authors: M. Battira, R. Bessaih
Abstract:
We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551930 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.
Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98929 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys
Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri
Abstract:
We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.
Keywords: Full-potential KKR-Green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003928 The Effect of Micro Tools Fabricated Dent on Alumina/Alumina Oxide Interface
Authors: Taposh Roy, Dipankar Choudhury, Belinda Pingguan-Murphy
Abstract:
The tribological outcomes of micro dent are found to be outstanding in many engineering and natural surfaces. Ceramic (Al2O3) is considered one of the most potential material to bearing surfaces particularly, artificial hip or knee implant. A well-defined micro dent on alumina oxide interface could further decrease friction and wear rate, thus increase their stability and durability. In this study we fabricated circular micro dent surface profiles (Dia: 400µm, Depth 20µm, P: 1.5mm; Dia: 400µm, Depth 20µm, P: 2mm) on pure Al2O3 (99.6%) substrate by using a micro tool machines. A preliminary tribological experiment was carried out to compare friction coefficient of these fabricated dent surfaces with that of non-textured surfaces. The experiment was carried on well know pin-on-disk specimens while other experimental parameters such as hertz pressure, speed, lubrication, and temperature were maintained to standard of simulated hip joints condition. The experiment results revealed that micro dent surface texture reduced 15%, 8% and 4% friction coefficient under 0.132,0.162, 0.187 GPa contact pressure respectively. Since this is a preliminary tribological study, we will pursue further experiments considering higher ranges of dent profiles and longer run experiments. However, the preliminary results confirmed the suitability of fabricating dent profile to ceramic surfaces by using micro tooling, and also their improved tribological performance in simulated hip joints.
Keywords: Micro dent, tribology, ceramic on ceramic hipjoints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345927 Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.Keywords: Air-cushion system, ground contact pressure, slippage, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962