Search results for: Image quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4267

Search results for: Image quality

3607 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
3606 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
3605 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

Authors: Dragos Nicolae VIZIREANU

Abstract:

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3604 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing

Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin

Abstract:

The garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, as well as complicated sewing operation. Due to these reasons, garment manufacturers have created systems to monitor and to control the quality of the products on a regular basis by conducting quality approaches to minimize variation. With that, the aim of this research has been to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas - quality systems and tools; quality control and types of inspection; as well as sampling procedures chosen for garment inspection. Besides, the focus of this research was to distinguish the quality approaches adopted by companies that supplied finished garments to both domestic and international markets. Feedback from each company representative has been obtained via online survey, which comprised of five sections and 44 questions on the organizational profile and the quality approaches employed in the garment industry. As a result, the response rate was 31%. The results revealed that almost all companies have established their own mechanism of process control by conducting a series of quality inspections for daily production, either it was formally set up or otherwise. In addition, quality inspection has been the predominant quality control activity in the garment manufacturing, while the level of complexity of these activities was substantially dictated by the customers. Moreover, AQL-based sampling was utilized by companies dealing with exports, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. Hence, this research has provided insights into the implementation of a number of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.

Keywords: Garment manufacturing, quality approaches, quality control, inspection, acceptance quality limit (AQL), and sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3424
3603 DWT Based Image Steganalysis

Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal

Abstract:

‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.

Keywords: Steganalysis, Moments, Wavelet Domain, KNN, K*, LWL, Naive Bayes Classifier, Neural networks, Decision trees, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
3602 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
3601 Dynamic Model Conception of Improving Services Quality in Railway Transport

Authors: Eva Nedeliakova, Jaroslav Masek, Juraj Camaj

Abstract:

This article describes the results of research focused on quality of railway freight transport services. Improvement of these services has a crucial importance in customer considering on the future use of railway transport. Processes filling the customer demands and output quality assessment were defined as a part of the research. In this contribution is introduced the map of quality planning and the algorithm of applied methodology. It characterizes a model which takes into account characters of transportation with linking a perception services quality in ordinary and extraordinary operation. Despite the fact that rail freight transport has its solid position in the transport market, lots of carriers worldwide have been experiencing a stagnation for a couple of years. Therefore, specific results of the research have a significant importance and belong to numerous initiatives aimed to develop and support railway transport not only by creating a single railway area or reducing noise but also by promoting railway services. This contribution is focused also on the application of dynamic quality models which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process can be taken into account.

Keywords: Quality, railway, transport, service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
3600 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images

Authors: H. Özkan

Abstract:

In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
3599 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
3598 The Robust Clustering with Reduction Dimension

Authors: Dyah E. Herwindiati

Abstract:

A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paper

Keywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
3597 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
3596 A Wavelet-Based Watermarking Method Exploiting the Contrast Sensitivity Function

Authors: John N. Ellinas, Panagiotis Kenterlis

Abstract:

The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The current paper presents an approach for still image digital watermarking in which the watermark embedding process employs the wavelet transform and incorporates Human Visual System (HVS) characteristics. The sensitivity of a human observer to contrast with respect to spatial frequency is described by the Contrast Sensitivity Function (CSF). The strength of the watermark within the decomposition subbands, which occupy an interval on the spatial frequencies, is adjusted according to this sensitivity. Moreover, the watermark embedding process is carried over the subband coefficients that lie on edges where distortions are less noticeable. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency.

Keywords: Image watermarking, wavelet transform, human visual system, contrast sensitivity function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
3595 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec

Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne

Abstract:

Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.

Keywords: Artificial intelligence, linear transformation and pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
3594 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients

Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai

Abstract:

Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.

Keywords: Social support, metastatic breast cancer, quality of life, social network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
3593 Application of Artificial Neural Network to Classification Surface Water Quality

Authors: S. Wechmongkhonkon, N.Poomtong, S. Areerachakul

Abstract:

Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.

Keywords: artificial neural network, classification, surface water quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
3592 Elements of a Culture of Quality in the Implementation of Quality Assurance Systems of Countries in the European Higher Education Area

Authors: L. Mion

Abstract:

The implementation of quality management systems in higher education in different countries is determined by national regulatory choices and supranational indications (such as the European Standard Guidelines for Quality Assurance). The effective functioning and transformative capacity of these quality management systems largely depend on the organizational context in which they are applied and, more specifically, on the culture of quality developed in single universities or in single countries. The University's concept of quality culture integrates the structural dimension of Quality Assurance (QA) (quality management manuals, process definitions, tools) with the value dimension of an organization (principles, skills, and attitudes). Within the EHEA (European Higher Education Area), countries such as Portugal, the Netherlands, the UK, and Norway demonstrate a greater integration of QA principles in the various organizational levels and areas of competence of university institutions or have greater experience in implementation or scientific and political debate on the matter. Therefore, the study, through an integrative literature review, of the quality management systems of these countries is aimed at determining a framework of the culture of quality, helpful in defining the elements which, both in structural-organizational terms and in terms of values and skills and attitudes, have proved to be factors of success in the effective implementation of quality assurance systems in universities and in the countries considered in the research. In order for a QA system to effectively aim for continuous improvement in a complex and dynamic context such as the university one, it must embrace a holistic vision of quality from an integrative perspective, focusing on the objective of transforming the reality being evaluated.

Keywords: Higher education, quality assurance, quality culture, Portugal, Norway, Netherlands, United Kingdom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102
3591 Elements of a Culture of Quality in the Implementation of Quality Assurance Systems of Countries in the European Higher Education Area

Authors: L. Mion

Abstract:

The implementation of quality management systems in higher education in different countries is determined by national regulatory choices and supranational indications (such as the European Standard Guidelines for Quality Assurance). The effective functioning and transformative capacity of these quality management systems largely depend on the organizational context in which they are applied and, more specifically, on the culture of quality developed in single universities or in single countries. The University's concept of quality culture integrates the structural dimension of Quality Assurance (QA) (quality management manuals, process definitions, tools) with the value dimension of an organization (principles, skills, and attitudes). Within the EHEA (European Higher Education Area), countries such as Portugal, the Netherlands, the UK, Norway demonstrate a greater integration of QA principles in the various organizational levels and areas of competence of university institutions or have greater experience in implementation or scientific and political debate on the matter. Therefore, the study, through an integrative literature review, of the quality management systems of these countries, aimed at determining a framework of the culture of quality, helpful in defining the elements which, both in structural-organizational terms and in terms of values and skills and attitudes, have proved to be factors of success in the effective implementation of quality assurance systems in universities and in the countries considered in the research. In order for a QA system to effectively aim for continuous improvement in a complex and dynamic context such as the university one, it must embrace a holistic vision of quality from an integrative perspective, focusing on the objective of transforming the reality being evaluated.

Keywords: Higher Education, quality assurance, quality culture, Portugal, Norway, Netherlands, United Kingdom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76
3590 FPGA based Relative Distance Measurement using Stereo Vision Technology

Authors: Manasi Pathade, Prachi Kadam, Renuka Kulkarni, Tejas Teredesai

Abstract:

In this paper, we propose a novel concept of relative distance measurement using Stereo Vision Technology and discuss its implementation on a FPGA based real-time image processor. We capture two images using two CCD cameras and compare them. Disparity is calculated for each pixel using a real time dense disparity calculation algorithm. This algorithm is based on the concept of indexed histogram for matching. Disparity being inversely proportional to distance (Proved Later), we can thus get the relative distances of objects in front of the camera. The output is displayed on a TV screen in the form of a depth image (optionally using pseudo colors). This system works in real time on a full PAL frame rate (720 x 576 active pixels @ 25 fps).

Keywords: Stereo Vision, Relative Distance Measurement, Indexed Histogram, Real time FPGA Image Processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
3589 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty

Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh

Abstract:

With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.

Keywords: Service quality assessment, healthcare resource allocation, robust optimization, budget uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
3588 The Control Vector Scheme for Design of Planar Primitive PH curves

Authors: Ching-Shoei Chiang, Sheng-Hsin Tsai, James Chen

Abstract:

The PH curve can be constructed by given parameters, but the shape of the curve is not so easy to image from the value of the parameters. On the contract, Bézier curve can be constructed by the control polygon, and from the control polygon, we can image the figure of the curve. In this paper, we want to use the hodograph of Bézier curve to construct PH curve by selecting part of the control vectors, and produce other control vectors, so the property of PH curve exists.

Keywords: PH curve, hodograph, Bézier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
3587 Determinants of Conference Service Quality as Perceived by International Attendees

Authors: Shiva Hashemi, Azizan Marzuki, S. Kiumarsi

Abstract:

In recent years, conference destinations have been highly competitive; therefore, it is necessary to know about the behaviours of conference participants such as the process of their decision-making and the assessment of perceived conference quality. A conceptual research framework based on the Theory of Planned Behaviour model is presented in this research to get better understanding factors that influence it. This research study highlights key factors presented in previous studies in which behaviour intentions of participants are affected by the quality of conference. Therefore, this study is believed to provide an idea that conference participants should be encouraged to contribute to the quality and behaviour intention of the conference.

Keywords: Conference attendees, service quality, perceives value, trust, behaviour intention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
3586 Histogram Slicing to Better Reveal Special Thermal Objects

Authors: S. Ratna Sulistiyanti, Adhi Susanto, Thomas Sri Widodo, Gede Bayu Suparta

Abstract:

In this paper, an experimentation to enhance the visibility of hot objects in a thermal image acquired with ordinary digital camera is reported, after the applications of lowpass and median filters to suppress the distracting granular noises. The common thresholding and slicing techniques were used on the histogram at different gray levels, followed by a subjective comparative evaluation. The best result came out with the threshold level 115 and the number of slices 3.

Keywords: enhance, thermal image, thresholding and slicingtechniques, granular noise, hot objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
3585 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline M. R. Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge dataset configurations.

Keywords: Brazil, classifiers, data-mining, Image Segmentation, oil well visualization, classifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
3584 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
3583 A Sub-Pixel Image Registration Technique with Applications to Defect Detection

Authors: Zhen-Hui Hu, Jyh-Shong Ju, Ming-Hwei Perng

Abstract:

This paper presents a useful sub-pixel image registration method using line segments and a sub-pixel edge detector. In this approach, straight line segments are first extracted from gray images at the pixel level before applying the sub-pixel edge detector. Next, all sub-pixel line edges are mapped onto the orientation-distance parameter space to solve for line correspondence between images. Finally, the registration parameters with sub-pixel accuracy are analytically solved via two linear least-square problems. The present approach can be applied to various fields where fast registration with sub-pixel accuracy is required. To illustrate, the present approach is applied to the inspection of printed circuits on a flat panel. Numerical example shows that the present approach is effective and accurate when target images contain a sufficient number of line segments, which is true in many industrial problems.

Keywords: Defect detection, Image registration, Straight line segment, Sub-pixel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
3582 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
3581 In-flight Meals, Passengers- Level of Satisfaction and Re-flying Intention

Authors: Mohd Zahari, M. S, Salleh, N. K., Kamaruddin, M. S. Y, Kutut, M. Z.

Abstract:

Service quality has become a centerpiece for airline companies in vying with one another and keeps their image in the minds of passengers. Many airlines have pushed service quality through service personalization which includes both ground and on board especially from the viewpoint of retaining satisfied passengers and attracting new ones. Besides those, in-flight meals/food service is another important aspect of the airline operation. The in flight meals/food services now are seen as part of marketing strategies in attracting business or leisure travelers. This study reports the outcomes of the investigation on in-flight meals/food attributes toward passengers- level of satisfaction and re-flying intention. Taste, freshness, appearance of in-flight meals/food served and menu choices are important to the airlines passengers especially for the long haul flight. Food not only contributes to the prediction of the airline passengers- levels of satisfaction but besides other factors slightly influence passengers- re- flying intention. Airline companies therefore should not ignore this element but take the opportunity to create more attractive and acceptable in-flight meals/food along with other matter as marketing tools in attracting passengers to re-flying with them.

Keywords: In-flight meal, passengers, satisfaction, re-flying and intention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8062
3580 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: Computer vision, rice kernel, husking, breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
3579 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
3578 Quality of Life of the Beneficiaries of the Government’s Bolsa Família Program: A Case Study in Mateiros/TO/Brazil

Authors: Mary L. G. S. Senna, Afonso R. Aquino, Veruska C. Dutra, Carlos H. C. Tolentino

Abstract:

The quality of life index, despite elucidating many discussions, the conceptual subjectivity of the term does not show precision, and consequently, many researchers seek to develop methods aiming to measure this concept, bringing it to a more concrete approach. In this study, the quality of life index method was used to analyze the population of Mateiros, Tocantins, Brazil for quality of life. After data collection, it was compared the quality of life index between the population and the group of beneficiaries of the Brazilian government assistance program Bolsa Família (Family Allowance). Some of the people interviewed receive financial aid from the federal government program Bolsa Família (22%). Comparisons were made among the final score of the quality of life index of the Mateiros population and the following factors: Gender, age, education, those working or not with tourism and those who receive or do not receive the Bolsa Família. It was observed that only the factor, Bolsa Família (p-score 0.0138), shows an association with quality of life improvement, noticing that those who have financial aid had a higher quality of life improvement than the rest of the population. It was concluded that, government assistance has shown a decisive element on the enhancement of Mateiros population quality of life, indicating that similar actions should be maintained.

Keywords: Quality of life index, government aid to families, sustainable tourism, Bolsa Familia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794