The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events
Authors: Jaqueline M. R. Vieira
Abstract:
Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge dataset configurations.
Keywords: Brazil, classifiers, data-mining, Image Segmentation, oil well visualization, classifiers.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096901
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548References:
[1] M. S. Ameen, “Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs”, Geological Society Special Publication 209, UK, 2003, p. 216.
[2] C. Barton, M. D. Zoback, “Discrimination of Natural Fractures from Drilling-Induced Wellbore Image Data – Implications for Reservoir Permeability”, SPE 78599, Reservoir Evaluation & Engineering, 2002.
[3] F. Cavani, R. V. Souza, A. J. Porto, “Segmentação e Classificação de Imagens de Laranjeiras”, Tese de mestrado USP, São Paulo, 2007.
[4] E. Cruz, D. Carvalho, C. Varella, “Comparação de Classificadores de Imagens Digitais na Determinação da Cobertura do Solo”, Dissertação de Mestrado INCRA, Mato Grosso, 2008.
[5] E. Cunha, “Identificação de Litofácies de Poços de Petróleo utilizando um Método Baseado em Redes Neurais Artificiais. Tese de Mestrado”, UFCG, Paraíba, 2002.
[6] A. Drummond, “Quimica de Fluídos de Perfuração para Poços de Petróleo”, UFRJ, 2005.
[7] R. Duda, P. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Comm. of ACM 15, 1. 1972, pp. 11-15.
[8] S. M. Luthi, P. Souhaité, “Fractures Apertures from Electrical Borehole Scans”, Geophysics, Vol. 55, No 7, July 1990.
[9] O. Máximo, D. Fernandes, “Uso de Graus de Confiança das Classes em Classificadores Bayesianos”, Anais XI SBSR, Belo Horizonte, 2003.
[10] R. A. Nelson, “2004 – AAPG Winter Education Conference Short Course: Integrated Exploration & Evaluation of Fractured Reservoir”, Broken N. Consulting, Inc. Simonton, Tx.
[11] K. Oliveira, E. Cunha, H. Gomes, “Implementação de um método baseado em redes neurais para descoberta de conhecimento em base de dados de poços de petróleo e gás”, 2o Congresso Brasileiro de P&D em Petróleo e Gás, 2004.
[12] A. Xavier, C. Guerra, “Detecção de Fraturas de Perfis Geofísicos de Poço com Morfologia Matemática”, Simpósio Brasileiro de Ciências Geodésicas e Tecnologia da Geoinformação, Recife, 2010.