Search results for: real time model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13045

Search results for: real time model

12415 Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles

Authors: Thanh-Duoc Phan, Saden H. Zahiri, S. H. Masood, Mahnaz Jahedi

Abstract:

In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.

Keywords: cold gas dynamic spray, X-ray diffraction, explicit finite element analysis, residual strain, titanium, particle impact, deformation behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
12414 System Identification Based on Stepwise Regression for Dynamic Market Representation

Authors: Alexander Efremov

Abstract:

A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.

Keywords: market identification, dynamic models, stepwise regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
12413 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.

Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
12412 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: Non-stationary, BINARMA(1, 1) model, Poisson Innovations, CML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
12411 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
12410 A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

Authors: Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar

Abstract:

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

Keywords: Model comparison, model clone detection, model versioning, EMF Model, model diff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
12409 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
12408 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
12407 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: M. M. Rahman, Md. Ashikur Rahman Khan, K. Kadirgama M. M. Noor, Rosli A. Bakar

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: Ti-6Al-4V, material removal rate, copper tungsten, positive polarity, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
12406 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title

Authors: J. Moshtagh, L. Eslami

Abstract:

Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.

Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
12405 Application of Ant Colony Optimization for Multi-objective Production Problems

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.

Keywords: Ant colony optimization, multi-objective problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
12404 FPGA-based Systems for Evolvable Hardware

Authors: Cyrille Lambert, Tatiana Kalganova, Emanuele Stomeo

Abstract:

Since 1992, year where Hugo de Garis has published the first paper on Evolvable Hardware (EHW), a period of intense creativity has followed. It has been actively researched, developed and applied to various problems. Different approaches have been proposed that created three main classifications: extrinsic, mixtrinsic and intrinsic EHW. Each of these solutions has a real interest. Nevertheless, although the extrinsic evolution generates some excellent results, the intrinsic systems are not so advanced. This paper suggests 3 possible solutions to implement the run-time configuration intrinsic EHW system: FPGA-based Run-Time Configuration system, JBits-based Run-Time Configuration system and Multi-board functional-level Run-Time Configuration system. The main characteristic of the proposed architectures is that they are implemented on Field Programmable Gate Array. A comparison of proposed solutions demonstrates that multi-board functional-level run-time configuration is superior in terms of scalability, flexibility and the implementation easiness.

Keywords: Evolvable hardware, evolutionary computation, FPGA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
12403 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: Sliding mode control, bus model, air suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
12402 Generating Frequent Patterns through Intersection between Transactions

Authors: M. Jamali, F. Taghiyareh

Abstract:

The problem of frequent itemset mining is considered in this paper. One new technique proposed to generate frequent patterns in large databases without time-consuming candidate generation. This technique is based on focusing on transaction instead of concentrating on itemset. This algorithm based on take intersection between one transaction and others transaction and the maximum shared items between transactions computed instead of creating itemset and computing their frequency. With applying real life transactions and some consumption is taken from real life data, the significant efficiency acquire from databases in generation association rules mining.

Keywords: Association rules, data mining, frequent patterns, shared itemset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
12401 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: Stochastic models, ARIMA, extreme streamflow, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
12400 A Grid-based Neural Network Framework for Multimodal Biometrics

Authors: Sitalakshmi Venkataraman

Abstract:

Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.

Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
12399 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs

Authors: G. C. Mahata, A. Goswami

Abstract:

This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with  stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number  (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering  cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.

Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
12398 Case Study of Bus Tourist-s Sightseeing Time in a New Sightseeing Spot

Authors: Takayuki Nanashima, Yoshiyuki Higuchi, Masao Ohta, Takashi Kuroda

Abstract:

As a result of traffic congestion caused by sightseeing and shuttle buses using park-and-ride parking lot near sightseeing spot, the waiting time for tourist increases. In this paper, when bus parking lot near sightseeing spot are overcrowded and full, a model for tourists getting off a bus on a congested road and transfer to the sightseeing spot by foot is proposed and verified. A model of getting off a bus on a congested road when the sightseeing parking lot is overcrowded was considered by the case analysis. As a result, effectiveness of the model of getting off a bus on a congested road could be quantitatively verified for times when parking capacity is exceeded and the bus parking lot next to the sightseeing spot is overcrowded.

Keywords: Transportation demand management, Park-and-ride, Traffic congestion, Tourist satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
12397 The Effects of Detector Spacing on Travel Time Prediction on Freeways

Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu

Abstract:

Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.

Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
12396 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: State of charge estimation, battery modeling, one-state hysteresis, filtering and estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
12395 Digital Paradoxes in Learning Theories

Authors: Marcello Bettoni

Abstract:

As a learning theory tries to borrow from science a framework to found its method, it shows paradoxes and paralysing contraddictions. This results, on one hand, from adopting a learning/teaching model as it were a mere “transfer of data" (mechanical learning approach), and on the other hand from borrowing the complexity theory (an indeterministic and non-linear model), that risks to vanish every educational effort. This work is aimed at describing existing criticism, unveiling the antinomic nature of such paradoxes, focussing on a view where neither the mechanical learning perspective nor the chaotic and nonlinear model can threaten and jeopardize the educational work. Author intends to go back over the steps that led to these paradoxes and to unveil their antinomic nature. Actually this could serve the purpose to explain some current misunderstandings about the real usefulness of Ict within the youth-s learning process and growth.

Keywords: Antinomy, complexity, Leibniz, paradox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
12394 Numerical Simulation of Tidal Currents in Persian Gulf

Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin

Abstract:

In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.

Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
12393 The Application of Real Options to Capital Budgeting

Authors: George Yungchih Wang

Abstract:

Real options theory suggests that managerial flexibility embedded within irreversible investments can account for a significant value in project valuation. Although the argument has become the dominant focus of capital investment theory over decades, yet recent survey literature in capital budgeting indicates that corporate practitioners still do not explicitly apply real options in investment decisions. In this paper, we explore how real options decision criteria can be transformed into equivalent capital budgeting criteria under the consideration of uncertainty, assuming that underlying stochastic process follows a geometric Brownian motion (GBM), a mixed diffusion-jump (MX), or a mean-reverting process (MR). These equivalent valuation techniques can be readily decomposed into conventional investment rules and “option impacts", the latter of which describe the impacts on optimal investment rules with the option value considered. Based on numerical analysis and Monte Carlo simulation, three major findings are derived. First, it is shown that real options could be successfully integrated into the mindset of conventional capital budgeting. Second, the inclusion of option impacts tends to delay investment. It is indicated that the delay effect is the most significant under a GBM process and the least significant under a MR process. Third, it is optimal to adopt the new capital budgeting criteria in investment decision-making and adopting a suboptimal investment rule without considering real options could lead to a substantial loss in value.

Keywords: real options, capital budgeting, geometric Brownianmotion, mixed diffusion-jump, mean-reverting process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780
12392 Optical Flow Based System for Cross Traffic Alert

Authors: Giuseppe Spampinato, Salvatore Curti, Ivana Guarneri, Arcangelo Bruna

Abstract:

This document describes an advanced system and methodology for Cross Traffic Alert (CTA), able to detect vehicles that move into the vehicle driving path from the left or right side. The camera is supposed to be not only on a vehicle still, e.g. at a traffic light or at an intersection, but also moving slowly, e.g. in a car park. In all of the aforementioned conditions, a driver’s short loss of concentration or distraction can easily lead to a serious accident. A valid support to avoid these kinds of car crashes is represented by the proposed system. It is an extension of our previous work, related to a clustering system, which only works on fixed cameras. Just a vanish point calculation and simple optical flow filtering, to eliminate motion vectors due to the car relative movement, is performed to let the system achieve high performances with different scenarios, cameras and resolutions. The proposed system just uses as input the optical flow, which is hardware implemented in the proposed platform and since the elaboration of the whole system is really speed and power consumption, it is inserted directly in the camera framework, allowing to execute all the processing in real-time.

Keywords: Clustering, cross traffic alert, optical flow, real time, vanishing point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
12391 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms

Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert

Abstract:

We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.

Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4198
12390 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: Equivalent circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
12389 The Grey Relational Analysis of the Influence Factors of Profit in Cartoon-s Character Merchandising Rights

Authors: Min Li, Tao Li

Abstract:

This paper constructs a four factors theoretical model of Chinese small and medium enterprises based on the “cartoon characters- reputation - enterprise marketing and management capabilities – protection of the cartoon image - institutional environment" by literature research, case studies and investigation. The empirical study show that the greatest impact on current merchandising rights income is the institutional environment friendliness, followed by marketing and management capabilities, input of character image protection and Cartoon characters- reputation through the real-time grey relational analysis, and the greatest impact on post-merchandising rights profit is Cartoon characters reputation, followed by the institutional environment friendliness, then marketing and management ability and input of character image protection through the time-delay grey relational analysis.

Keywords: Cartoon characters, merchandising rights, influencefactors, grey relational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
12388 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
12387 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605
12386 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun

Abstract:

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850