Search results for: optimal reaction networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3887

Search results for: optimal reaction networks.

3257 A Survey of Access Control Schemes in Wireless Sensor Networks

Authors: Youssou Faye, Ibrahima Niang, Thomas Noel

Abstract:

Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.

Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
3256 Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: Trajectory planning, direct method, indirect method, highly automated driving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2941
3255 Biodiesel Production from High Iodine Number Candlenut Oil

Authors: Hary Sulistyo, Suprihastuti S. Rahayu, Gatot Winoto, I M. Suardjaja

Abstract:

Transesterification of candlenut (aleurites moluccana) oil with methanol using potassium hydroxide as catalyst was studied. The objective of the present investigation was to produce the methyl ester for use as biodiesel. The operation variables employed were methanol to oil molar ratio (3:1 – 9:1), catalyst concentration (0.50 – 1.5 %) and temperature (303 – 343K). Oil volume of 150 mL, reaction time of 75 min were fixed as common parameters in all the experiments. The concentration of methyl ester was evaluated by mass balance of free glycerol formed which was analyzed by using periodic acid. The optimal triglyceride conversion was attained by using methanol to oil ratio of 6:1, potassium hydroxide as catalyst was of 1%, at room temperature. Methyl ester formed was characterized by its density, viscosity, cloud and pour points. The biodiesel properties had properties similar to those of diesel oil, except for the viscosity that was higher.

Keywords: biodiesel, candlenut, methyl ester, transestrification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
3254 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3253 Further Investigation of Elastic Scattering of 16O on 12C at Different Energies

Authors: Sh. Hamada, N. Burtebayev, N. Amangeldi, A. Amar

Abstract:

The aim of this work is to study the elastic transfer phenomenon which takes place in the elastic scattering of 16O on 12C at energies near the Coulomb barrier. Where, the angular distribution decrease steadily with increasing the scattering angle, then the cross section will increase at backward angles due to the α-transfer process. This reaction was also studied at different energies for tracking the nuclear rainbow phenomenon. The experimental data of the angular distribution at these energies were compared to the calculation predictions. The optical potential codes such as SPIVAL and Distorted Wave Born Approximation (DWUCK5) were used in analysis.

Keywords: Transfer reaction, DWBA, Elastic Scattering, Optical Potential Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
3252 Advanced Travel Information System in Heterogeneous Networks

Authors: Hsu-Yung Cheng, Victor Gau, Chih-Wei Huang, Jenq-Neng Hwang, Chih-Chang Yu

Abstract:

In order to achieve better road utilization and traffic efficiency, there is an urgent need for a travel information delivery mechanism to assist the drivers in making better decisions in the emerging intelligent transportation system applications. In this paper, we propose a relayed multicast scheme under heterogeneous networks for this purpose. In the proposed system, travel information consisting of summarized traffic conditions, important events, real-time traffic videos, and local information service contents is formed into layers and multicasted through an integration of WiMAX infrastructure and Vehicular Ad hoc Networks (VANET). By the support of adaptive modulation and coding in WiMAX, the radio resources can be optimally allocated when performing multicast so as to dynamically adjust the number of data layers received by the users. In addition to multicast supported by WiMAX, a knowledge propagation and information relay scheme by VANET is designed. The experimental results validate the feasibility and effectiveness of the proposed scheme.

Keywords: Intelligent Transportation Systems, RelayedMulticast, WiMAX, Vehicular Ad hoc Networks (VANET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
3251 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
3250 Applications of Cascade Correlation Neural Networks for Cipher System Identification

Authors: B. Chandra, P. Paul Varghese

Abstract:

Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.

Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
3249 Preparation of Nanosized Iron Oxide and their Photocatalytic Properties for Congo Red

Authors: Akram Hosseinian, Hourieh Rezaei, Ali Reza Mahjoub

Abstract:

Nanostructured Iron Oxide with different morphologies of rod-like and granular have been suc-cessfully prepared via a solid-state reaction in the presence of NaCl, NaBr, NaI and NaN3, respectively. The added salts not only prevent a drastic increase in the size of the products but also provide suitable conditions for the oriented growth of primary nanoparticles. The formation mechanisms of these materials by solid-state reaction at ambient temperature are proposed. The photocatalytic experiments for congo red (CR) have demonstrated that the mixture of α-Fe2O3 and Fe3O4 nanostructures were more efficient than α-Fe2O3 nanostructures.

Keywords: Nano, Iron Oxide, Solid-State, Halide salts, Congored

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
3248 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
3247 Advanced Neural Network Learning Applied to Pulping Modeling

Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
3246 A Study on Optimal Determination of Partial Transmission Ratios of Helical Gearboxes with Second-Step Double Gear-Sets

Authors: Vu Ngoc Pi

Abstract:

In this paper, a study on the applications of the optimization and regression techniques for optimal calculation of partial ratios of helical gearboxes with second-step double gear-sets for minimal cross section dimension is introduced. From the condition of the moment equilibrium of a mechanic system including three gear units and their regular resistance condition, models for calculation of the partial ratios of helical gearboxes with second-step double gear-sets were given. Especially, by regression analysis, explicit models for calculation of the partial ratios are introduced. These models allow determining the partial ratios accurately and simply.

Keywords: Gearbox design, optimal design, helical gearbox, transmission ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
3245 Optimal Parameters of Double Moving Average Control Chart

Authors: Y. Areepong

Abstract:

The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARL

Keywords: Optimal parameters, Average Run Length, Average Delay time, Double Moving Average chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
3244 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay

Authors: Yunquan Ke, Chunfang Miao

Abstract:

In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.

Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
3243 A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control

Authors: Sorawit Stapornchaisit, Sidshchadhaa Aumted, Hiroshi Takami

Abstract:

In this paper, we propose a novel adaptive voltage control strategy for boost converter via Inverse LQ Servo-Control. Our presented strategy is based on an analytical formula of Inverse Linear Quadratic (ILQ) design method, which is not necessary to solve Riccati’s equation directly. The optimal and adaptive controller of the voltage control system is designed. The stability and the robust control are analyzed. Whereas, we can get the analytical solution for the optimal and robust voltage control is achieved through the natural angular velocity within a single parameter and we can change the responses easily via the ILQ control theory. Our method provides effective results as the stable responses and the response times are not drifted even if the condition is changed widely.

Keywords: Boost converter, optimal voltage control, inverse LQ design method, type-1 servo-system, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
3242 High Performance Fibre Reinforced Alkali Activated Slag Concrete

Authors: A. Sivakumar, K. Srinivasan

Abstract:

The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.

Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
3241 Optimal Mitigation of Slopes by Probabilistic Methods

Authors: D. De-León-Escobedo, D. J. Delgado-Hernández, S. Pérez

Abstract:

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.

Keywords: Expected life-cycle cost, failure probability, slopes failure, storms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
3240 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248
3239 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization

Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao

Abstract:

Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.

Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
3238 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks

Authors: Moslem Afrashteh Mehr

Abstract:

Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlab

Keywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
3237 Cooperative Data Caching in WSN

Authors: Narottam Chand

Abstract:

Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.

Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
3236 Group Similarity Transformation of a Time Dependent Chemical Convective Process

Authors: M. M. Kassem, A. S. Rashed

Abstract:

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
3235 Optimization of the Structures of the Electric Feeder Systems of the Oil Pumping Plants in Algeria

Authors: M. Bouguerra, F. Laaouad, I. Habi, R. Azaizia

Abstract:

In Algeria, now, the oil pumping plants are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs. Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears.These latter cannot only be more economic but more reliable than the independent local sources as well. In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking in account the economic parameters and the indices of reliability.

Keywords: Optimization, reliability, electric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
3234 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
3233 Oxidation of Selected Pharmaceuticals in Water Matrices by Bromine and Chlorine

Authors: Juan L. Acero, F. Javier Benitez, Francisco J. Real, Gloria Roldan, Francisco Casas

Abstract:

The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, hydrochlorotiazide and phenacetin) in ultrapure water and in three water matrices (a groundwater, a surface water from a public reservoir and a secondary effluent from a WWTP) was investigated. The apparent rate constants for the bromination reaction were determined as a function of the pH, and the sequence obtained for the reaction rate was amoxicillin > naproxen >> hydrochlorotiazide ≈ phenacetin ≈ metoprolol. The proposal of a kinetic mechanism, which specifies the dissociation of bromine and each pharmaceutical according to their pKa values and the pH allowed the determination of the intrinsic rate constants for every elementary reaction. The influence of the main operating conditions (pH, initial bromine dose, and the water matrix) on the degradation of pharmaceuticals was established. In addition, the presence of bromide in chlorination experiments was investigated. The presence of bromide in wastewaters and drinking waters in the range of 10 to several hundred μg L-1 accelerated slightly the oxidation of the selected pharmaceuticals during chorine disinfection.

Keywords: Pharmaceuticals, bromine, chlorine, apparent andintrinsic rate constants, water matrices, degradation rates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
3232 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation

Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun

Abstract:

Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90 and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of an elbow flexion and extension task were investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76% and 0.82% when using muscle relaxation periods of 60, 90 and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity and knowing the optimal resting period will make the automation more effective.

Keywords: Rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
3231 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution

Authors: Tomoaki Hashimoto

Abstract:

In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
3230 Optimal Duty-Cycle Modulation Scheme for Analog-To-Digital Conversion Systems

Authors: G. Sonfack, J. Mbihi, B. Lonla Moffo

Abstract:

This paper presents an optimal duty-cycle modulation (ODCM) scheme for analog-to-digital conversion (ADC) systems. The overall ODCM-Based ADC problem is decoupled into optimal DCM and digital filtering sub-problems, while taking into account constraints of mutual design parameters between the two. Using a set of three lemmas and four morphological theorems, the ODCM sub-problem is modelled as a nonlinear cost function with nonlinear constraints. Then, a weighted least pth norm of the error between ideal and predicted frequency responses is used as a cost function for the digital filtering sub-problem. In addition, MATLAB fmincon and MATLAB iirlnorm tools are used as optimal DCM and least pth norm solvers respectively. Furthermore, the virtual simulation scheme of an overall prototyping ODCM-based ADC system is implemented and well tested with the help of Simulink tool according to relevant set of design data, i.e., 3 KHz of modulating bandwidth, 172 KHz of maximum modulation frequency and 25 MHZ of sampling frequency. Finally, the results obtained and presented show that the ODCM-based ADC achieves under 3 KHz of modulating bandwidth: 57 dBc of SINAD (signal-to-noise and distorsion), 58 dB of SFDR (Surpious free dynamic range) -80 dBc of THD (total harmonic distorsion), and 10 bits of minimum resolution. These performance levels appear to be a great challenge within the class of oversampling ADC topologies, with 2nd order IIR (infinite impulse response) decimation filter.

Keywords: Digital IIR filter, morphological lemmas and theorems, optimal DCM-based DAC, virtual simulation, weighted least pth norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
3229 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
3228 Impact of MAC Layer on the Performance of Routing Protocols in Mobile Ad hoc Networks

Authors: T.G. Basavaraju, Subir Kumar Sarkar, C Puttamadappa

Abstract:

Mobile Ad hoc Networks is an autonomous system of mobile nodes connected by multi-hop wireless links without centralized infrastructure support. As mobile communication gains popularity, the need for suitable ad hoc routing protocols will continue to grow. Efficient dynamic routing is an important research challenge in such a network. Bandwidth constrained mobile devices use on-demand approach in their routing protocols because of its effectiveness and efficiency. Many researchers have conducted numerous simulations for comparing the performance of these protocols under varying conditions and constraints. Most of them are not aware of MAC Protocols, which will impact the relative performance of routing protocols considered in different network scenarios. In this paper we investigate the choice of MAC protocols affects the relative performance of ad hoc routing protocols under different scenarios. We have evaluated the performance of these protocols using NS2 simulations. Our results show that the performance of routing protocols of ad hoc networks will suffer when run over different MAC Layer protocols.

Keywords: AODV, DSR, DSDV, MAC, MANETs, relativeperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679