Optimal Trajectories for Highly Automated Driving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: Trajectory planning, direct method, indirect method, highly automated driving.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1106815

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877

References:


[1] R. Attia, R. Orjuela, and M. Basset, “Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle,” in American Control Conference (ACC), 2012. IEEE, 2012, pp. 6509–6514.
[2] M. Werling and D. Liccardo, “Automatic collision avoidance using model-predictive online optimization,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 6309–6314.
[3] Y. Gao, A. Gray, J. Frasch, T. Lin, E. Tseng, J. Hedrick, and F. Borrelli, “Spatial predictive control for agile semi-autonomous ground vehicles,” in Proceedings of the 11th International Symposium on Advanced Vehicle Control, 2012.
[4] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street scenarios in a frenet frame,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 987–993.
[5] P. Riekert and T.-E. Schunck, “Zur Fahrmechanik des gummibereiften Kraftfahrzeugs,” Ingenieur-Archiv, vol. 11, no. 3, pp. 210–224, 1940.
[6] M. Walter, N. Nitzsche, D. Odenthal, and S. M¨uller, “Lateral vehicle guidance control for autonomous and cooperative driving,” in Proc. European Control Conference. European Control Conference, 2014, pp. 2667–2672.
[7] M. Risch, “Der kamm’sche kreis-wie stark kann man beim kurvenfahren bremsen,” Praxis der Naturwissenschaften-Physik, no. 5/51, pp. 7–12, 2002.
[8] M. Werling, S. Kammel, J. Ziegler, and L. Gr¨oll, “Optimal trajectories for time-critical street scenarios using discretized terminal manifolds,” The International Journal of Robotics Research, vol. 31, no. 3, pp. 346–359, 2012.
[9] D. Althoff, M. Buss, A. Lawitzky, M. Werling, and D. Wollherr, “On-line trajectory generation for safe and optimal vehicle motion planning,” in Autonomous Mobile Systems 2012. Springer, 2012, pp. 99–107.
[10] I. Papadimitriou and M. Tomizuka, “Fast lane changing computations using polynomials,” in Proceedings of the American Control Conference, vol. 1. IEEE, 2003, pp. 48–53.
[11] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle motion planning,” in 2010 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2010, pp. 518–522.
[12] M. Papageorgiou, Optimierung: statische, dynamische, stochastische Verfahren. Springer DE, 2012.
[13] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal control problems,” 1983.
[14] O. F¨ollinger and G. Roppenecker, Optimale Regelung und Steuerung, 1994.
[15] C. Rathgeber, F. Winkler, D. Odenthal, and S. M¨uller, “Lateral trajectory tracking control for autonomous vehicles,” in Proc. European Control Conference. European Control Conference, 2014, pp. 1024–1029.
[16] S. Fuchshumer, “Algebraic linear identification, modelling, and applications of flatness-based control,” Ph.D. dissertation, 2005.
[17] R. Orend, “Modelling and control of a vehicle with single-wheel chassis actuators,” in Proceedings of the 16th IFAC World Congress, Prague, 2005.