Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31168
Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller


In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: Trajectory Planning, direct method, indirect method, highly automated driving

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480


[1] R. Attia, R. Orjuela, and M. Basset, “Coupled longitudinal and lateral control strategy improving lateral stability for autonomous vehicle,” in American Control Conference (ACC), 2012. IEEE, 2012, pp. 6509–6514.
[2] M. Werling and D. Liccardo, “Automatic collision avoidance using model-predictive online optimization,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 6309–6314.
[3] Y. Gao, A. Gray, J. Frasch, T. Lin, E. Tseng, J. Hedrick, and F. Borrelli, “Spatial predictive control for agile semi-autonomous ground vehicles,” in Proceedings of the 11th International Symposium on Advanced Vehicle Control, 2012.
[4] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street scenarios in a frenet frame,” in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 987–993.
[5] P. Riekert and T.-E. Schunck, “Zur Fahrmechanik des gummibereiften Kraftfahrzeugs,” Ingenieur-Archiv, vol. 11, no. 3, pp. 210–224, 1940.
[6] M. Walter, N. Nitzsche, D. Odenthal, and S. M¨uller, “Lateral vehicle guidance control for autonomous and cooperative driving,” in Proc. European Control Conference. European Control Conference, 2014, pp. 2667–2672.
[7] M. Risch, “Der kamm’sche kreis-wie stark kann man beim kurvenfahren bremsen,” Praxis der Naturwissenschaften-Physik, no. 5/51, pp. 7–12, 2002.
[8] M. Werling, S. Kammel, J. Ziegler, and L. Gr¨oll, “Optimal trajectories for time-critical street scenarios using discretized terminal manifolds,” The International Journal of Robotics Research, vol. 31, no. 3, pp. 346–359, 2012.
[9] D. Althoff, M. Buss, A. Lawitzky, M. Werling, and D. Wollherr, “On-line trajectory generation for safe and optimal vehicle motion planning,” in Autonomous Mobile Systems 2012. Springer, 2012, pp. 99–107.
[10] I. Papadimitriou and M. Tomizuka, “Fast lane changing computations using polynomials,” in Proceedings of the American Control Conference, vol. 1. IEEE, 2003, pp. 48–53.
[11] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle motion planning,” in 2010 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2010, pp. 518–522.
[12] M. Papageorgiou, Optimierung: statische, dynamische, stochastische Verfahren. Springer DE, 2012.
[13] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal control problems,” 1983.
[14] O. F¨ollinger and G. Roppenecker, Optimale Regelung und Steuerung, 1994.
[15] C. Rathgeber, F. Winkler, D. Odenthal, and S. M¨uller, “Lateral trajectory tracking control for autonomous vehicles,” in Proc. European Control Conference. European Control Conference, 2014, pp. 1024–1029.
[16] S. Fuchshumer, “Algebraic linear identification, modelling, and applications of flatness-based control,” Ph.D. dissertation, 2005.
[17] R. Orend, “Modelling and control of a vehicle with single-wheel chassis actuators,” in Proceedings of the 16th IFAC World Congress, Prague, 2005.