Search results for: homogenization techniques.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2511

Search results for: homogenization techniques.

1881 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: Effects, fermentation, fermentation materials, period, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
1880 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

Authors: Ashish Saini, A.K. Saxena

Abstract:

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1879 Acoustic Detection of the Red Date Palm Weevil

Authors: Mohammed A. Al-Manie, Mohammed I. Alkanhal

Abstract:

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Keywords: Acoustic emissions, acoustic sensors, nondestructivetests, Red Date Palm Weevil, signal processing..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
1878 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
1877 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302
1876 Biospeckle Supported Fruit Bruise Detection

Authors: Adilson M. Enes, Juliana A. Fracarolli, Inácio M. Dal Fabbro, Silvestre Rodrigues

Abstract:

This research work proposed a study of fruit bruise detection by means of a biospeckle method, selecting the papaya fruit (Carica papaya) as testing body. Papaya is recognized as a fruit of outstanding nutritional qualities, showing high vitamin A content, calcium, carbohydrates, exhibiting high popularity all over the world, considering consumption and acceptability. The commercialization of papaya faces special problems which are associated to bruise generation during harvesting, packing and transportation. Papaya is classified as climacteric fruit, permitting to be harvested before the maturation is completed. However, by one side bruise generation is partially controlled once the fruit flesh exhibits high mechanical firmness. By the other side, mechanical loads can set a future bruise at that maturation stage, when it can not be detected yet by conventional methods. Mechanical damages of fruit skin leave an entrance door to microorganisms and pathogens, which will cause severe losses of quality attributes. Traditional techniques of fruit quality inspection include total soluble solids determination, mechanical firmness tests, visual inspections, which would hardly meet required conditions for a fully automated process. However, the pertinent literature reveals a new method named biospeckle which is based on the laser reflectance and interference phenomenon. The laser biospeckle or dynamic speckle is quantified by means of the Moment of Inertia, named after its mechanical counterpart due to similarity between the defining formulae. Biospeckle techniques are able to quantify biological activities of living tissues, which has been applied to seed viability analysis, vegetable senescence and similar topics. Since the biospeckle techniques can monitor tissue physiology, it could also detect changes in the fruit caused by mechanical damages. The proposed technique holds non invasive character, being able to generate numerical results consistent with an adequate automation. The experimental tests associated to this research work included the selection of papaya fruit at different maturation stages which were submitted to artificial mechanical bruising tests. Damages were visually compared with the frequency maps yielded by the biospeckle technique. Results were considered in close agreement.

Keywords: Biospeckle, papaya, mechanical damages, vegetable bruising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
1875 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time, and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration-based analysis and wear prediction. In present study, a simulation model was developed to investigate the bearing wear behaviour, resulting because of different operating conditions, to complement the vibration analysis. In current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. In addition, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journals and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 μm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behaviour and on the other hand it also helps to establish a co-relation between wear based and vibration based analysis. Therefore, the model provides a cost effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: Condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
1874 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1873 A Simplified and Effective Algorithm Used to Mine Similar Processes: An Illustrated Example

Authors: Min-Hsun Kuo, Yun-Shiow Chen

Abstract:

The running logs of a process hold valuable information about its executed activity behavior and generated activity logic structure. Theses informative logs can be extracted, analyzed and utilized to improve the efficiencies of the process's execution and conduction. One of the techniques used to accomplish the process improvement is called as process mining. To mine similar processes is such an improvement mission in process mining. Rather than directly mining similar processes using a single comparing coefficient or a complicate fitness function, this paper presents a simplified heuristic process mining algorithm with two similarity comparisons that are able to relatively conform the activity logic sequences (traces) of mining processes with those of a normalized (regularized) one. The relative process conformance is to find which of the mining processes match the required activity sequences and relationships, further for necessary and sufficient applications of the mined processes to process improvements. One similarity presented is defined by the relationships in terms of the number of similar activity sequences existing in different processes; another similarity expresses the degree of the similar (identical) activity sequences among the conforming processes. Since these two similarities are with respect to certain typical behavior (activity sequences) occurred in an entire process, the common problems, such as the inappropriateness of an absolute comparison and the incapability of an intrinsic information elicitation, which are often appeared in other process conforming techniques, can be solved by the relative process comparison presented in this paper. To demonstrate the potentiality of the proposed algorithm, a numerical example is illustrated.

Keywords: process mining, process similarity, artificial intelligence, process conformance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1872 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1871 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure, and to determine the impact of certain parameters on the patient dose. The radiation dose was measured by TLD devices (Thermoluminescent Dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: Dosimetry, radiation dose, interventional radiology procedures, patient radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
1870 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: Admissions, algorithms, cloud computing, differentiation, fog computing, leveling, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
1869 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: Tool condition monitoring, tool wear prediction, milling operation, flute tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1868 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam

Abstract:

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Keywords: Androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4133
1867 Topographical Image Transference Compatibility Generated Through Moiré Technique Applying Parametrical Softwares of Computer Assisted Design

Authors: M. V. G. Silva, J. Gazzola, I. M. Dal Fabbro, A. C. L. Lino

Abstract:

Computer aided design accounts with the support of parametric software in the design of machine components as well as of any other pieces of interest. The complexities of the element under study sometimes offer certain difficulties to computer design, or ever might generate mistakes in the final body conception. Reverse engineering techniques are based on the transformation of already conceived body images into a matrix of points which can be visualized by the design software. The literature exhibits several techniques to obtain machine components dimensional fields, as contact instrument (MMC), calipers and optical methods as laser scanner, holograms as well as moiré methods. The objective of this research work was to analyze the moiré technique as instrument of reverse engineering, applied to bodies of nom complex geometry as simple solid figures, creating matrices of points. These matrices were forwarded to a parametric software named SolidWorks to generate the virtual object. Volume data obtained by mechanical means, i.e., by caliper, the volume obtained through the moiré method and the volume generated by the SolidWorks software were compared and found to be in close agreement. This research work suggests the application of phase shifting moiré methods as instrument of reverse engineering, serving also to support farm machinery element designs.

Keywords: Reverse engineering, Moiré technique, three dimensional image generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3457
1866 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
1865 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.

Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1864 Cyber Fraud Schemes: Modus Operandi, Tools and Techniques, and the Role of European Legislation as a Defense Strategy

Authors: Papathanasiou Anastasios, Liontos George, Liagkou Vasiliki, Glavas Euripides

Abstract:

The purpose of this paper is to describe the growing problem of various cyber fraud schemes that exist on the internet and are currently among the most prevalent. The main focus of this paper is to provide a detailed description of the modus operandi, tools, and techniques utilized in four basic typologies of cyber frauds: Business Email Compromise (BEC) attacks, investment fraud, romance scams, and online sales fraud. The paper aims to shed light on the methods employed by cybercriminals in perpetrating these types of fraud, as well as the strategies they use to deceive and victimize individuals and businesses on the internet. Furthermore, this study outlines defense strategies intended to tackle the issue head-on, with a particular emphasis on the crucial role played by European legislation. European legislation has proactively adapted to the evolving landscape of cyber fraud, striving to enhance cybersecurity awareness, bolster user education, and implement advanced technical controls to mitigate associated risks. The paper evaluates the advantages and innovations brought about by the European legislation while also acknowledging potential flaws that cybercriminals might exploit. As a result, recommendations for refining the legislation are offered in this study in order to better address this pressing issue.

Keywords: Business email compromise, cybercrime, European legislation, investment fraud, Network and Information Security, online sales fraud, romance scams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
1863 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques

Authors: S. Visetpotjanakit, C. Khrautongkieo

Abstract:

Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.

Keywords: International atomic energy agency, proficiency test, radiation monitoring, seawater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
1862 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
1861 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
1860 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
1859 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: Climate Change, Downscaling, GCM, RCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3375
1858 Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes

Authors: Muhammad Sajjad, Naveed Khattak, Noman Jafri

Abstract:

World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.

Keywords: Adaptive, digital image processing, imagemagnification, interpolation, geometrical shapes, qualitative &quantitative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
1857 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar

Abstract:

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.

Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1856 Teacher Training Course: Conflict Resolution through Mediation

Authors: Csilla M. Szabó

Abstract:

In Hungary, the society has changed a lot for the past 25 years, and these changes could be detected in educational situations as well. The number and the intensity of conflicts have been increased in most fields of life, as well as at schools. Teachers have difficulties to be able to handle school conflicts. What is more, the new net generation, generation Z has values and behavioural patterns different from those of the previous one, which might generate more serious conflicts at school, especially with teachers who were mainly socialising in a traditional teacher – student relationship. In Hungary, the bill CCIV of 2011 declared the foundation of Institutes of Teacher Training in higher education institutes. One of the tasks of the Institutes is to survey the competences and needs of teachers working in public education and to provide further trainings and services for them according to their needs and requirements. This job is supported by the Social Renewal Operative Programs 4.1.2.B. The professors of a college carried out a questionnaire and surveyed the needs and the requirements of teachers working in the region. Based on the results, the professors of the Institute of Teacher Training decided to meet the requirements of teachers and to launch short teacher further training courses in spring 2015. One of the courses is going to focus on school conflict management through mediation. The aim of the pilot course is to provide conflict management techniques for teachers and to present different mediation techniques to them. The theoretical part of the course (5 hours) will enable participants to understand the main points and the advantages of mediation, while the practical part (10 hours) will involve teachers in role plays to learn how to cope with conflict situations applying mediation. We hope if conflicts could be reduced, it would influence school atmosphere in a positive way and the teaching – learning process could be more successful and effective.

Keywords: Conflict resolution, generation Z, mediation, teacher training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1855 Application of Interferometric Techniques for Quality Control of Oils Used in the Food Industry

Authors: Andres Piña, Amy Meléndez, Pablo Cano, Tomas Cahuich

Abstract:

The purpose of this project is to propose a quick and environmentally friendly alternative to measure the quality of oils used in food industry. There is evidence that repeated and indiscriminate use of oils in food processing cause physicochemical changes with formation of potentially toxic compounds that can affect the health of consumers and cause organoleptic changes. In order to assess the quality of oils, non-destructive optical techniques such as Interferometry offer a rapid alternative to the use of reagents, using only the interaction of light on the oil. Through this project, we used interferograms of samples of oil placed under different heating conditions to establish the changes in their quality. These interferograms were obtained by means of a Mach-Zehnder Interferometer using a beam of light from a HeNe laser of 10mW at 632.8nm. Each interferogram was captured, analyzed and measured full width at half-maximum (FWHM) using the software from Amcap and ImageJ. The total of FWHMs was organized in three groups. It was observed that the average obtained from each of the FWHMs of group A shows a behavior that is almost linear, therefore it is probable that the exposure time is not relevant when the oil is kept under constant temperature. Group B exhibits a slight exponential model when temperature raises between 373 K and 393 K. Results of the t-Student show a probability of 95% (0.05) of the existence of variation in the molecular composition of both samples. Furthermore, we found a correlation between the Iodine Indexes (Physicochemical Analysis) and the Interferograms (Optical Analysis) of group C. Based on these results, this project highlights the importance of the quality of the oils used in food industry and shows how Interferometry can be a useful tool for this purpose.

Keywords: Food industry, interferometric, oils, quality control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1854 Critical Approach to Define the Architectural Structure of a Health Prototype in a Rural Area of Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Luca Preis

Abstract:

A primary healthcare facility in developing countries should be a multifunctional space able to respond to different requirements: Flexibility, modularity, aggregation and reversibility. These basic features could be better satisfied if applied to an architectural artifact that complies with the typological, figurative and constructive aspects of the context in which it is located. Therefore, the purpose of this paper is to identify a procedure that can define the figurative aspects of the architectural structure of the health prototype for the marginal areas of developing countries through a critical approach. The application context is the rural areas of the Northeast of Bahia in Brazil. The prototype should be located in the rural district of Quingoma, in the municipality of Lauro de Freitas, a particular place where there is still a cultural fusion of black and indigenous populations. Based on the historical analysis of settlement strategies and architectural structures in spaces of public interest or collective use, this paper aims to provide a procedure able to identify the categories and rules underlying typological and figurative aspects, in order to detect significant and generalizable elements, as well as materials and constructive techniques typically adopted in the rural areas of Brazil. The object of this work is therefore not only the recovery of certain constructive approaches but also the development of a procedure that integrates the requirements of the primary healthcare prototype with its surrounding economic, social, cultural, settlement and figurative conditions.

Keywords: Architectural typology, Developing countries, Local construction techniques, Primary health care.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
1853 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.

Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115
1852 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850