
 

 

 
Abstract—Recent perceived climate variability raises concerns 

with unprecedented hydrological phenomena and extremes. 
Distribution and circulation of the waters of the Earth become 
increasingly difficult to determine because of additional uncertainty 
related to anthropogenic emissions. The world wide observed 
changes in the large-scale hydrological cycle have been related to an 
increase in the observed temperature over several decades. Although 
the effect of change in climate on hydrology provides a general 
picture of possible hydrological global change, new tools and 
frameworks for modelling hydrological series with nonstationary 
characteristics at finer scales, are required for assessing climate 
change impacts. Of the downscaling techniques, dynamic 
downscaling is usually based on the use of Regional Climate Models 
(RCMs), which generate finer resolution output based on atmospheric 
physics over a region using General Circulation Model (GCM) fields 
as boundary conditions. However, RCMs are not expected to capture 
the observed spatial precipitation extremes at a fine cell scale or at a 
basin scale. Statistical downscaling derives a statistical or empirical 
relationship between the variables simulated by the GCMs, called 
predictors, and station-scale hydrologic variables, called predictands. 
The main focus of the paper is on the need for using statistical 
downscaling techniques for projection of local hydrometeorological 
variables under climate change scenarios. The projections can be then 
served as a means of input source to various hydrologic models to 
obtain streamflow, evapotranspiration, soil moisture and other 
hydrological variables of interest. 

  
Keywords—Climate Change, Downscaling, GCM, RCM.  

I. INTRODUCTION 

ESPITE notable development, GCMs do not provide 
perfect simulations of reality and cannot provide the 

details on very small spatial scales due to incomplete scientific 
understanding and limitations of available observations [2], 
[3]. For bridging the gap between the scale of GCMs and 
required resolution for practical applications, downscaling 
provides climate change information at a suitable spatial and 
temporal scale from the GCM data. Statistical and dynamical 
downscaling are two broad main types. To study the impact of 
climate change on water resources the spatio-temporal 
changes in components of hydrological cycle like streamflow 
and precipitation is significant. To derive on GCM simulated 
information at local scale many downscaling techniques have 
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been adopted throughout the globe [4]. The dynamical 
downscaling is mainly covered by Regional Climate Models 
(RCMs). The RCMs utilize large scale and lateral boundary 
conditions from GCMs to produce higher resolution outputs 
that demands high computation time. Dynamical downscaling 
does not provide information at the point or station scale. For 
temperature projections, the uncertainty introduced by the 
RCM is less than that from the emissions scenario, but for 
precipitation projections, scenario uncertainty is larger than 
RCM uncertainty. Statistical downscaling are preferred in 
hydrologic impact assessment since they prove competent to 
observed data while being computationally inexpensive, 
provide prompt results, and their realm of application can be 
easily transferred from one region to another.  

II. CLIMATE AND HYDROLOGY  

Climate is defined as the general weather conditions over a 
certain time-span and a certain area. Climate change refers 
only to the anthropogenic changes over comparable time 
periods [77]. However, in IPCC usage, climate change 
consists of both natural variability and human-induced change, 
despite the fact that most of the observed increase in global 
average temperature since the mid-20th century is likely 
related to anthropogenic activity [3]. In a broad sense, climate 
change is defined as a statistically significant variation in 
mean or variability persisting for an extended period [3]. In 
the hydrological cycle, water moves continually between 
oceans and the atmosphere through different processes such as 
precipitation, percolation and evaporation over various 
temporal and spatial scales. Under natural conditions, climate 
variations are already considered to be one of the major causes 
of hydrological change and have crucial social and economic 
implications for water resources and flood risk [5], [6]. As 
anthropogenic climate change affects the energy and mass 
balance of the fundamental hydrological processes, the water 
cycle is expected to be intensified [7] and hydrological 
patterns are very likely to be different under different climate 
scenarios [1]. Although there are distinctions between natural 
variability and anthropogenic climate abnormality, both 
human activity and natural climate influence are intertwined 
with current climate events and the changes in climate are 
expected to affect the balance of water distribution and living 
organisms on the earth [3]. 

A. Observed Trends 

Comprehensive reviews of hydrological trends are widely 
available. For example, Zhang et al. [8] detected human 
influence on precipitation trends. Milly et al. [9] identified 
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global patterns of trends in streamflow and water availability. 
In the UK, Wilby et al. [10] surveyed historical hydrological 
trends related climate change and flood risk. The traditional 
stationarity assumptions in hydrology are challenged by 
climate change [9]. Past experience will not be very likely to 
provide a good guide to future conditions under a changing 
climate [1]. Therefore, understanding observed and projected 
change in hydrological processes is essential to future water 
resources management [11]-[13], flood risk management [14] 
as well as ecosystems [15]. In hydrology, different 
hydrological processes are related to each other and are under 
the rule of conservation of mass. Therefore, the trends of one 
hydrological process are likely to be related to that of other 
processes. Precipitation, evaporation, change in storage and 
runoff are the most fundamental processes in the water 
balance equation. Quantifying their time variant characteristics 
under the driving of climate change is foremost in current 
hydrological studies. 

1. Streamflow 

At a global scale, total continental streamflow data have 
been reconstituted using the discharge fluctuations calculated 
by combining the variations of the various incomplete 
continent gauge records [16], [17]. With small secular trends, 
large interannual variations which may be related to global 
circulations are observed in continental and global freshwater 
discharge [17]-[19]. Although some studies suggest that there 
are detected trends in global streamflows [20], the directions 
of streamflow trends are still equivocal [21]. At a regional 
scale, the historical trends in the numerous runoff records have 
been identified in numerous studies [22], [23] by different 
statistical tests. A consistent projection across most climate 
change scenarios as per for increases in annual mean 
streamflow in high latitudes and southeast Asia, and decreases 
in central Asia [24]. At a river basin scale Mondal and 
Mujumdar [25] suggests larger impacts of human induced 
change in climate on streamflow as compared to precipitation. 
The uncertainties in projections of future streamflow under 
climate change can also be quantified using a statistical 
framework [26]. 

2. Precipitation  

The characteristics and trend of gridded precipitation have 
been analysed in many studies such as those of the Global 
Historical Climatology Network (GHCN) [27] and the 
Climatic Research Unit (CRU) [28]. From the gridded 
precipitation databases, the IPCC fourth report [3] summarised 
that over the 20th century, the precipitation generally 
increased from 30οN to 85οN but decreased between 10οN and 
30οN, and there were no significantly strong trends over the 
Southern Hemisphere. As per IPCC 2007 the summer 
precipitation is likely to increase in northern Asia, East and 
South Asia. An increase in the frequency of intense 
precipitation events is likely to occur in parts of South and 
East Asia. Projections reveal a significant increase in mean 
monsoon precipitation of 8% and a possible extension of the 
monsoon period. An increase in precipitable water of 12–16% 

is projected over major parts of India. A maximum increase of 
about 20–24% is found over the Arabian Peninsula, adjoining 
regions of Pakistan, northwest India and Nepal [29]. Extreme 
events are reported to be increased in a warming environment 
in India [30]. Also as per the relationship between Indian 
Ocean sea surface temperature and extreme rainfall events, an 
increase in the risk of major floods is expected over central 
India [31]. The analysis [32] of 17 GCMs shows an increasing 
trend in the frequency of wet events mostly in northern and 
coastal regions of India. Also basin level majority of Indian 
rivers show increase in precipitation [33]. 

B. General Circulation Models 

The historical variations and the observed trends as 
discussed above can only provide weak evidence or prediction 
support. Scenarios of potential changes in global climate are 
needed for decision support modelling [6]. For investigating 
hydrological impacts of climate change, global climate models 
or general circulation models (GCMs) are the main tool [6]. 
Over the last few decades, GCMs have been developed to 
emulate the present climate system and to project future 
climate scenarios. In the latest developments, the IPCC GCMs 
include complex energy and mass balance equations and even 
interactive chemical or biochemical components [3]. 

From the IPCC multi-model ensembles, the GCM climate 
projections show that precipitation is generally expected to 
increase in the tropical regions and at high latitudes but 
decrease in the subtropics [3]. The variations of projected 
precipitation depend on changes in large scale circulation and 
water vapour loading across regions, and they are substantially 
seasonal [1]. In spite of being able to capture large-scale 
circulation patterns and also model smoothly varying fields 
such as surface pressure, GCMs often fail to reproduce non 
smooth fields such as precipitation [34]. In addition to the 
above, the spatial scale on which GCMs predicts the variable 
at a coarser scale (e.g., 3.75ο x 3.75ο) for coupled global 
circulation model (CGCM2), for hydrological modeling 
purposes [35]. As the upcoming report of IPCC AR5 the most 
recommended GCM is the Coupled Model Comparison 
Project Phase 5 (CMIP5), a new generation of General 
Circulation Models (GCMs) has become available to the 
scientific community [36]. In comparison to the former model 
generation, these Earth System Models (ESMs) incorporate 
additional components describing the atmosphere's interaction 
with land-use and vegetation, as well as explicitly taking into 
account atmospheric chemistry, aerosols and the carbon cycle 
[37]. The uncertainty due to the missing GCM output is found 
from cumulative distribution functions [38] and the concept of 
imprecise probability can also be validated.  

The new model generation is driven by newly derived 
atmospheric composition forcings the historical forcing for 
present climate conditions and the Representative 
Concentration Pathways (RCPs) [39] for future scenarios. The 
dataset resulting from these global simulations will be the 
mainstay of future climate change studies and is the baseline 
of the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change (AR5). Moreover this data set is the 
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starting point of different regional downscaling initiatives on 
the generation of regional climate change scenarios, which are 
being coordinated worldwide for the first time within the 
framework of the Cordinated Regional Climate Downscaling 
Experiment (CORDEX) [40]. These initiatives use both 
dynamical and statistical downscaling approaches to provide 
high resolution information over a specific region of interest at 
the spatial scale required for many climate change impact 
studies. Regional changes in the hydrological cycle are far 
more uncertain in GCM simulations. Downscaling is therefore 
necessary to model regional-scale climatic/hydrologic 
variables such as evapotranspiration, precipitation, soil 
moisture, etc. at a smaller scale, based on the large-scale GCM 
outputs. 

C. Downscaling 

Downscaling is used for bridging the gap between the scale 
of GCMs and required resolution for practical applications at 
regional scale. It is a method that derives local- to regional-
scale (10 to 100 km) information from larger-scale models or 
data analyses. Two main methods are distinguished: 
dynamical downscaling and empirical/statistical downscaling. 
The dynamical method uses the output of regional climate 
models, global models with variable spatial resolution, or 
high-resolution global models. There are certain distinct steps 
[41] that are generally adopted in downscaling techniques of 
which can be selected as per application of the problem. The 
empirical/statistical methods develop statistical relationships 
that link the large-scale atmospheric variables with 
local/regional climate variables. In all cases, the quality of the 
downscaled product depends on the quality of the driving 
model [24]. 

1. Dynamical Downscaling 

Dynamical downscaling is usually based on the use of 
regional climate models (RCMs), which generate finer 
resolution output based on atmospheric physics over a region 
using GCM fields as boundary conditions [42], [43]. The 
physical consistency between GCMs and RCMs is controlled 
by the agreement of their large-scale circulations [44]. The 
individual choice of domain size controls the divergence 
between the RCMs and their driving GCMs [40]. 

As a consequence of the higher spatial resolution output, 
RCMs provide a better description of topographic phenomena 
such as orographic effects [45]. Moreover, the finer dynamical 
processes in RCMs produce more realistic mesoscale 
circulation patterns [46]. However, RCMs are not expected to 
capture the observed spatial precipitation extremes at a fine 
cell scale [47]. Many studies [48] have found that the skill 
improvement of RCM depends not only on the RCM 
resolution but also on the region and the season. Although 
RCMs may give feedback to their driving GCMs, many 
dynamic downscaling approaches are based on a one-way 
nesting approach and have no feedback from the RCM to the 
driving GCM [49].  

The main problem with RCMs is that significant biases in 
the simulation of mean precipitation on large scales can be 

inherited from the driving GCM [50]. Also the boundary 
conditions are derived from a specific GCM; use of different 
GCMs will result in different projections [51]. Frei et al. [52] 
noted that inter-model differences are related to model biases. 
Moreover, Christensen et al. [53] suggest that GCM biases 
may not be linear and biases may not be cancelled out by 
simply taking differences between the control and future 
scenarios, which many studies have adopted [54]. Imperfect 
modelling and numerical stability are also plaguing RCMs 
[55], [49]. Despite their rapid development, RCMs are still 
ridden with problems related to parameterisation schemes due 
to the fact that physical processes are modelled at a scale on 
which they cannot be explicitly resolved [49]. The RCM 
precipitation outputs are still found to be sensitive to the 
numerical scheme and parameters [56]-[58]. The discrepancies 
between areal average values and site-specific data are 
expected to remain a problem [59]. 

2. Statistical Downscaling 

Based on particular statistical relationships between the 
coarse GCMs and fine observed data, statistical downscaling 
is a straightforward means of obtaining high resolution climate 
projections [60]. Statistical downscaling may be used 
whenever impacts models require small-scale data, provide 
suitable observed data are available to derive the statistical 
relationships and covers all kind of locations. The output 
obtained is generally small scale information on future climate 
or climate change (maps, data, etc.), the key input being 
appropriate observed data to calibrate and validate the 
statistical model(s) and GCM data for future climate to drive 
the model(s) [61]. Reviews of downscaling methods are 
widely available [62], [49]. Taking the relationship with 
RCMs into consideration, [49] divided statistical downscaling 
approaches into prefect prognosis (PP), model output statistics 
(MOS) and weather generators. In PP, the statistical 
downscaling relationships are established by observations.  

In MOS, gridded RCM simulations and observations are 
used together to develop downscaling relationship. Using PP, 
MOS or both of them, weather generators are hybrid 
downscaling methods. With respect to types of statistical 
methods, downscaling can be categorical, continuous-valued 
or hybrid [47], [63]. In categorical downscaling, 
classifications and clustering are the common statistical 
techniques to relate data to different groups according to large-
scale circulation patterns and data attributes [64]. For 
continuous-valued downscaling, regression relationships are 
widely used to map large scale predictors onto local-scale 
predictands [65]. When the GCM simulated variables are large 
in number, nonparametric stepwise predictor identification 
analysis may be performed based on partial mutual 
information [66]. In hybrid downscaling, different statistical 
approaches are combined [67] and they are sometimes referred 
to as weather generators, based on algorithms of conceptual 
processes [68], [69]. Based on the approach to model the daily 
precipitation occurrence, the spell length approach [70] is also 
used which is a type of weather generator, where instead of 
simulating rainfall occurrences day by day, the models operate 
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by fitting probability distribution to observed relative 
frequencies of wet and dry spell lengths. Statistical 
Downscaling Model (SDSM) was developed by Wilby et al. 
[67] and has been widely used since then till date [71]. Even 
though SDSM is an instant tool for statistical downscaling, its 
skills to reproduce the extreme precipitation were very limited. 
This was partly due to the high randomicity and nonlinearity 
dominated in extreme precipitation process and because of the 
generally low predictability of daily precipitation amounts at 
local scales by regional forcing factors. Kannan and Ghosh 
[72], [73] developed Support Vector Machine-Probabilistic 
Global Search Algorithm coupled approach for statistical 
downscaling the rainfall from GCM output. They 
demonstrated its successful application in downscaling of the 
rainfall of Assam and Meghalaya of north eastern India using 
several GCMs. Kannan and Ghosh [74] proposed an algorithm 
that initially simulates the rainfall state of the entire river basin 
and then projects multisite rainfall amounts using a 
nonparametric kernel regression estimator. The study revealed 
considerable changes in rainfall intensity and dry and well 
spell lengths at different locations in their study area in India. 
Salvi et al. [75] most recently developed the methodology of 
statistical downscaling of multi site rainfall projections in 
India for climate change impact assessment using GCM 
developed by CCCMA and successfully demonstrated that it 
can also consider orographic effect on daily precipitation. The 
model effectively captured individual station means, the 
spatial patterns of the standard deviations, and the cross 
correlation between station rainfalls. It also reveals spatially 
non-uniform changes in rainfall, with a possible increase for 
the western coastline and northeastern India (rainfall surplus 
areas); and a decrease in northern India, western India (rainfall 
deficit areas), and on the southeastern coastline, highlighting 
the need for a detailed hydrologic study that includes future 
projections regarding water availability. Geostatistical 
approach [76] has recently been developed that has an added 
feature of its application in remote sensing. Although 
statistical downscaling can be a computationally efficient 
alterative to dynamic downscaling, the validity of statistical 
downscaling is based on an assumption that the empirical 
relationship identified for the current climate will hold for 
future climate scenarios [60]. 

III. CONCLUDING REMARKS 

The present literature on significance of downscaling in 
hydrological studies and parameters are abounding. In order to 
arrive at definitive answers for future prediction of the 
hydrological variables at local level it is mandatory to opt for 
downscaling. Few area to be focused upon are GCMs 
prediction capacity, selection of downscaling technique, its 
limitations, hydrological modelling and handling with 
uncertainties. 

Dynamic downscaling leads to the development of finer 
scale physics based models known as Regional Climate 
Models (RCMs) that take input from GCMs simulations as 
initial and boundary conditions, incorporate the sub-grid 
features, and produce very high resolution results. The 

uncertainty in hydrologic impacts is largely due to the driving. 
Using various RCMs, dynamic downscaling has been 
attempted successfully for rainfall projections. Regional 
climate models have the advantage of very fine resolution but 
are computationally expensive. Due to significant 
computational power demand dynamical downscaling is not 
widely performed. Also bias correction is yet another major 
problem in dynamical downscaling. Reduction of uncertainty 
relies upon the improvement in GCMs and downscaling 
techniques. Uncertainty measures can provide an estimate of 
confidence limits on model results and would be of value in 
the application of these results in risk and policy analyses. 
Various statistical downscaling methods is examined in this 
study which relies on data driven approaches that involve 
deriving empirical relationships that transform the large-scale 
features of GCM simulated climate variables (predictors) into 
regional-scale variables (predictand) such as rainfall. 
Statistical downscaling methods are computationally 
inexpensive and are useful if sufficient historical data is 
available for generating probability distribution functions and 
establishing statistical relationships. 
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